• 数据库SQL优化大总结


    (一)索引的作用

    索引通俗来讲就相当于书的目录,当我们根据条件查询的时候,没有索引,便需要全表扫描,数据量少还可以,一旦数据量超过百万甚至千万,一条查询sql执行往往需要几十秒甚至更多,5秒以上就已经让人难以忍受了。

    提升查询速度的方向一是提升硬件(内存、cpu、硬盘),二是在软件上优化(加索引、优化sql;优化sql不在本文阐述范围之内)。

    能在软件上解决的,就不在硬件上解决,毕竟硬件提升代码昂贵,性价比太低。代价小且行之有效的解决方法就是合理的加索引。

    索引使用得当,能使查询速度提升上万倍,效果惊人。

    (二)mysql的索引类型:

    mysql的索引有5种:主键索引、普通索引、唯一索引、全文索引、聚合索引(多列索引)。

    唯一索引和全文索引用的很少,我们主要关注主键索引、普通索引和聚合索引。

    1)主键索引:主键索引是加在主键上的索引,设置主键(primary key)的时候,mysql会自动创建主键索引;

    2)普通索引:创建在非主键列上的索引;

    3)聚合索引:创建在多列上的索引。

    (三)索引的语法:

    查看某张表的索引:show index from 表名;

    创建普通索引:alter table 表名 add index  索引名 (加索引的列) 

    创建聚合索引:alter table 表名 add index  索引名 (加索引的列1,加索引的列2) 

    删除某张表的索引:drop index 索引名 on 表名;
     

    sql 查询慢的48个原因分析。  
      
      查询速度慢的原因很多,常见如下几种:  
      
      1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)  
      
      2、I/O吞吐量小,形成了瓶颈效应。  
      
      3、没有创建计算列导致查询不优化。  
      
      4、内存不足  
      
      5、网络速度慢  
      
      6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)  
      
      7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)  
      
      8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。  
      
      9、返回了不必要的行和列  
      
      10、查询语句不好,没有优化 ●可以通过如下方法来优化查询 :  
      
      1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提高I/O越重要.  
      
      2、纵向、横向分割表,减少表的尺寸(sp_spaceuse)  
      
      3、升级硬件  
      
      4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段  
      
      5、提高网速;  
      
      6、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。运行 Microsoft SQL Server? 2000 时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的 1.5 倍。如果另外安装了全文检索功能,并打算运行 Microsoft 搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的 3 倍。将 SQL Server max server memory 服务器配置选项配置为物理内存的 1.5 倍(虚拟内存大小设置的一半)。  
      
      7、增加服务器CPU个数;但是必须明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MsSQL自动评估选择的。单个任务分解成多个任务,就可以在处理器上运行。例如耽搁查询的排序、连接、扫描和GROUP BY字句同时执行,SQL SERVER根据系统的负载情况决定最优的并行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新操作UPDATE,INSERT,DELETE还不能并行处理。  
      
    8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。 like 'a%' 使用索引 like '%a' 不使用索引用 like '%a%' 查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。  
      
      9、DB Server 和APPLication Server 分离;OLTP和OLAP分离  
      
      10、分布式分区视图可用于实现数据库服务器联合体。联合体是一组分开管理的服务器,但它们相互协作分担系统的处理负荷。这种通过分区数据形成数据库服务器联合体的机制能够扩大一组服务器,以支持大型的多层 Web 站点的处理需要。有关更多信息,参见设计联合数据库服务器。(参照SQL帮助文件'分区视图')  
      
      a、在实现分区视图之前,必须先水平分区表  
      
      b、在创建成员表后,在每个成员服务器上定义一个分布式分区视图,并且每个视图具有相同的名称。这样,引用分布式分区视图名的查询可以在任何一个成员服务器上运行。系统操作如同每个成员服务器上都有一个原始表的复本一样,但其实每个服务器上只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。  
      
      11、重建索引 DBCC REINDEX ,DBCC INDEXDEFRAG,收缩数据和日志 DBCC SHRINKDB,DBCC SHRINKFILE. 设置自动收缩日志.对于大的数据库不要设置数据库自动增长,它会降低服务器的性能。 在T-sql的写法上有很大的讲究,下面列出常见的要点:首先,DBMS处理查询计划的过程是这样的:  
      
      1、 查询语句的词法、语法检查  
      
      2、 将语句提交给DBMS的查询优化器  
      
      3、 优化器做代数优化和存取路径的优化  
      
      4、 由预编译模块生成查询规划  
      
      5、 然后在合适的时间提交给系统处理执行  
      
      6、 最后将执行结果返回给用户其次,看一下SQL SERVER的数据存放的结构:一个页面的大小为8K(8060)字节,8个页面为一个盘区,按照B树存放。  
      
      12、Commit和rollback的区别 Rollback:回滚所有的事物。 Commit:提交当前的事物. 没有必要在动态SQL里写事物,如果要写请写在外面如: begin tran exec(@s) commit trans 或者将动态SQL 写成函数或者存储过程。  
      
      13、在查询Select语句中用Where字句限制返回的行数,避免表扫描,如果返回不必要的数据,浪费了服务器的I/O资源,加重了网络的负担降低性能。如果表很大,在表扫描的期间将表锁住,禁止其他的联接访问表,后果严重。  
      
      14、SQL的注释申明对执行没有任何影响  
      
      15、尽可能不使用光标,它占用大量的资源。如果需要row-by-row地执行,尽量采用非光标技术,如:在客户端循环,用临时表,Table变量,用子查询,用Case语句等等。游标可以按照它所支持的提取选项进行分类: 只进 必须按照从第一行到最后一行的顺序提取行。FETCH NEXT 是唯一允许的提取操作,也是默认方式。可滚动性 可以在游标中任何地方随机提取任意行。游标的技术在SQL2000下变得功能很强大,他的目的是支持循环。有四个并发选项 READ_ONLY:不允许通过游标定位更新(Update),且在组成结果集的行中没有锁。 OPTIMISTIC WITH valueS:乐观并发控制是事务控制理论的一个标准部分。乐观并发控制用于这样的情形,即在打开游标及更新行的间隔中,只有很小的机会让第二个用户更新某一行。当某个游标以此选项打开时,没有锁控制其中的行,这将有助于最大化其处理能力。  
      
      
    如果用户试图修改某一行,则此行的当前值会与最后一次提取此行时获取的值进行比较。如果任何值发生改变,则服务器就会知道其他人已更新了此行,并会返回一个错误。如果值是一样的,服务器就执行修改。 选择这个并发选项�OPTIMISTIC WITH ROW VERSIONING:此乐观并发控制选项基于行版本控制。使用行版本控制,其中的表必须具有某种版本标识符,服务器可用它来确定该行在读入游标后是否有所更改。在 SQL Server 中,这个性能由 timestamp 数据类型提供,它是一个二进制数字,表示数据库中更改的相对顺序。每个数据库都有一个全局当前时间戳值:@@DBTS。每次以任何方式更改带有 timestamp 列的行时,SQL Server 先在时间戳列中存储当前的 @@DBTS 值,然后增加 @@DBTS 的值。如果某 个表具有 timestamp 列,则时间戳会被记到行级。服务器就可以比较某行的当前时间戳值和上次提取时所存储的时间戳值,从而确定该行是否已更新。服务器不必比较所有列的值,只需比较 timestamp 列即可。如果应用程序对没有 timestamp 列的表要求基于行版本控制的乐观并发,则游标默认为基于数值的乐观并发控制。 SCROLL LOCKS 这个选项实现悲观并发控制。在悲观并发控制中,在把数据库的行读入游标结果集时,应用程序将试图锁定数据库行。在使用服务器游标时,将行读入游标时会在其上放置一个更新锁。如果在事务内打开游标,则该事务更新锁将一直保持到事务被提交或回滚;当提取下一行时,将除去游标锁。如果在事务外打开游标,则提取下一行时,锁就被丢弃。因此,每当用户需要完全的悲观并发控制时,游标都应在事务内打开。更新锁将阻止任何其它任务获取更新锁或排它锁,从而阻止其它任务更新该行。然而,更新锁并不阻止共享锁,所以它不会阻止其它任务读取行,除非第二个任务也在要求带更新锁的读取。滚动锁根据在游标定义的 SELECT 语句中指定的锁提示,这些游标并发选项可以生成滚动锁。滚动锁在提取时在每行上获取,并保持到下次提取或者游标关闭,以先发生者为准。下次提取时,服务器为新提取中的行获取滚动锁,并释放上次提取中行的滚动锁。滚动锁独立于事务锁,并可以保持到一个提交或回滚操作之后。如果提交时关闭游标的选项为关,则 COMMIT 语句并不关闭任何打开的游标,而且滚动锁被保留到提交之后,以维护对所提取数据的隔离。所获取滚动锁的类型取决于游标并发选项和游标 SELECT 语句中的锁提示。锁提示 只读 乐观数值 乐观行版本控制 锁定无提示 未锁定 未锁定 未锁定 更新 NOLOCK 未锁定 未锁定 未锁定 未锁定 HOLDLOCK 共享 共享 共享 更新 UPDLOCK 错误 更新 更新 更新 TABLOCKX 错误 未锁定 未锁定 更新其它 未锁定 未锁定 未锁定 更新 *指定 NOLOCK 提示将使指定了该提示的表在游标内是只读的。  
      
      16、用Profiler来跟踪查询,得到查询所需的时间,找出SQL的问题所在;用索引优化器优化索引  
      
      17、注意UNion和UNion all 的区别。UNION all好  
      
      18、注意使用DISTINCT,在没有必要时不要用,它同UNION一样会使查询变慢。重复的记录在查询里是没有问题的  
      
      19、查询时不要返回不需要的行、列  
      
      20、用sp_configure 'query governor cost limit'或者SET QUERY_GOVERNOR_COST_LIMIT来限制查询消耗的资源。当评估查询消耗的资源超出限制时,服务器自动取消查询,在查询之前就扼杀掉。SET LOCKTIME设置锁的时间  
      
      21、用select top 100 / 10 Percent 来限制用户返回的行数或者SET ROWCOUNT来限制操作的行  
      
      22、在SQL2000以前,一般不要用如下的字句: "IS NULL", "<>", "!=", "!>", "!<", "NOT", "NOT EXISTS", "NOT IN", "NOT LIKE", and "LIKE '%500'",因为他们不走索引全是表扫描。也不要在WHere字句中的列名加函数,如Convert,substring等,如果必须用函数的时候,创建计算列再创建索引来替代.还可以变通写法:WHERE SUBSTRING(firstname,1,1) = 'm'改为WHERE firstname like 'm%'(索引扫描),一定要将函数和列名分开。并且索引不能建得太多和太大。NOT IN会多次扫描表,使用EXISTS、NOT EXISTS ,IN , LEFT OUTER JOIN 来替代,特别是左连接,而Exists比IN更快,最慢的是NOT操作.如果列的值含有空,以前它的索引不起作用,现在2000的优化器能够处理了。相同的是IS NULL,“NOT", "NOT EXISTS", "NOT IN"能优化她,而”<>”等还是不能优化,用不到索引。  
      
      23、使用Query Analyzer,查看SQL语句的查询计划和评估分析是否是优化的SQL。一般的20%的代码占据了80%的资源,我们优化的重点是这些慢的地方。  
      
      24、如果使用了IN或者OR等时发现查询没有走索引,使用显示申明指定索引: SELECT * FROM PersonMember (INDEX = IX_Title) WHERE processid IN (‘男',‘女')  
      
      25、将需要查询的结果预先计算好放在表中,查询的时候再SELECT。这在SQL7.0以前是最重要的手段。例如医院的住院费计算。  
    26、MIN() 和 MAX()能使用到合适的索引。  
      
      27、数据库有一个原则是代码离数据越近越好,所以优先选择Default,依次为Rules,Triggers, Constraint(约束如外健主健CheckUNIQUE……,数据类型的最大长度等等都是约束),Procedure.这样不仅维护工作小,编写程序质量高,并且执行的速度快。  
      
      28、如果要插入大的二进制值到Image列,使用存储过程,千万不要用内嵌INsert来插入(不知JAVA是否)。因为这样应用程序首先将二进制值转换成字符串(尺寸是它的两倍),服务器受到字符后又将他转换成二进制值.存储过程就没有这些动作: 方法:Create procedure p_insert as insert into table(Fimage) values (@image), 在前台调用这个存储过程传入二进制参数,这样处理速度明显改善。  
      
      29、Between在某些时候比IN速度更快,Between能够更快地根据索引找到范围。用查询优化器可见到差别。 select * from chineseresume where title in ('男','女') Select * from chineseresume where between '男' and '女' 是一样的。由于in会在比较多次,所以有时会慢些。  
      
      30、在必要是对全局或者局部临时表创建索引,有时能够提高速度,但不是一定会这样,因为索引也耗费大量的资源。他的创建同是实际表一样。  
      
      31、不要建没有作用的事物例如产生报表时,浪费资源。只有在必要使用事物时使用它。  
      
      32、用OR的字句可以分解成多个查询,并且通过UNION 连接多个查询。他们的速度只同是否使用索引有关,如果查询需要用到联合索引,用UNION all执行的效率更高.多个OR的字句没有用到索引,改写成UNION的形式再试图与索引匹配。一个关键的问题是否用到索引。  
      
      33、尽量少用视图,它的效率低。对视图操作比直接对表操作慢,可以用stored procedure来代替她。特别的是不要用视图嵌套,嵌套视图增加了寻找原始资料的难度。我们看视图的本质:它是存放在服务器上的被优化好了的已经产生了查询规划的SQL。对单个表检索数据时,不要使用指向多个表的视图,直接从表检索或者仅仅包含这个表的视图上读,否则增加了不必要的开销,查询受到干扰.为了加快视图的查询,MsSQL增加了视图索引的功能。  
      
      34、没有必要时不要用DISTINCT和ORDER BY,这些动作可以改在客户端执行。它们增加了额外的开销。这同UNION 和UNION ALL一样的道理。 SELECT top 20 ad.companyname,comid,position,ad.referenceid,worklocation, convert(varchar(10),ad.postDate,120) as postDate1,workyear,degreedescription FROM jobcn_query.dbo.COMPANYAD_query ad where referenceID in('JCNAD00329667','JCNAD132168','JCNAD00337748','JCNAD00338345','JCNAD00333138','JCNAD00303570', 'JCNAD00303569','JCNAD00303568','JCNAD00306698','JCNAD00231935','JCNAD00231933','JCNAD00254567', 'JCNAD00254585','JCNAD00254608','JCNAD00254607','JCNAD00258524','JCNAD00332133','JCNAD00268618', 'JCNAD00279196','JCNAD00268613') order by postdate desc  
      
      35、在IN后面值的列表中,将出现最频繁的值放在最前面,出现得最少的放在最后面,减少判断的次数。  
      
      36、当用SELECT INTO时,它会锁住系统表(sysobjects,sysindexes等等),阻塞其他的连接的存取。创建临时表时用显示申明语句,而不是select INTO. drop table t_lxh begin tran select * into t_lxh from chineseresume where name = 'XYZ' --commit 在另一个连接中SELECT * from sysobjects可以看到 SELECT INTO 会锁住系统表,Create table 也会锁系统表(不管是临时表还是系统表)。所以千万不要在事物内使用它!!!这样的话如果是经常要用的临时表请使用实表,或者临时表变量。  
      
      37、一般在GROUP BY 个HAVING字句之前就能剔除多余的行,所以尽量不要用它们来做剔除行的工作。他们的执行顺序应该如下最优:select 的Where字句选择所有合适的行,Group By用来分组个统计行,Having字句用来剔除多余的分组。这样Group By 个Having的开销小,查询快.对于大的数据行进行分组和Having十分消耗资源。如果Group BY的目的不包括计算,只是分组,那么用Distinct更快  
    38、一次更新多条记录比分多次更新每次一条快,就是说批处理好  
      
      39、少用临时表,尽量用结果集和Table类性的变量来代替它,Table 类型的变量比临时表好  
      
      40、在SQL2000下,计算字段是可以索引的,需要满足的条件如下:  
      
      a、计算字段的表达是确定的  
      
      b、不能用在TEXT,Ntext,Image数据类型  
      
      c、必须配制如下选项 ANSI_NULLS = ON, ANSI_PADDINGS = ON, …….  
      
      41、尽量将数据的处理工作放在服务器上,减少网络的开销,如使用存储过程。存储过程是编译好、优化过、并且被组织到一个执行规划里、且存储在数据库中的SQL语句,是控制流语言的集合,速度当然快。反复执行的动态SQL,可以使用临时存储过程,该过程(临时表)被放在Tempdb中。以前由于SQL SERVER对复杂的数学计算不支持,所以不得不将这个工作放在其他的层上而增加网络的开销。SQL2000支持UDFs,现在支持复杂的数学计算,函数的返回值不要太大,这样的开销很大。用户自定义函数象光标一样执行的消耗大量的资源,如果返回大的结果采用存储过程  
      
      42、不要在一句话里再三的使用相同的函数,浪费资源,将结果放在变量里再调用更快  
      
      43、SELECT COUNT(*)的效率教低,尽量变通他的写法,而EXISTS快.同时请注意区别: select count(Field of null) from Table 和 select count(Field of NOT null) from Table 的返回值是不同的!!!  
      
      44、当服务器的内存够多时,配制线程数量 = 最大连接数+5,这样能发挥最大的效率;否则使用 配制线程数量<最大连接数启用SQL SERVER的线程池来解决,如果还是数量 = 最大连接数+5,严重的损害服务器的性能。  
      
      45、按照一定的次序来访问你的表。如果你先锁住表A,再锁住表B,那么在所有的存储过程中都要按照这个顺序来锁定它们。如果你(不经意的)某个存储过程中先锁定表B,再锁定表A,这可能就会导致一个死锁。如果锁定顺序没有被预先详细的设计好,死锁很难被发现  
      
      46、通过SQL Server Performance Monitor监视相应硬件的负载 Memory: Page Faults / sec计数器如果该值偶尔走高,表明当时有线程竞争内存。如果持续很高,则内存可能是瓶颈。 Process:  
      
      1、% DPC Time 指在范例间隔期间处理器用在缓延程序调用(DPC)接收和提供服务的百分比。(DPC 正在运行的为比标准间隔优先权低的间隔)。 由于 DPC 是以特权模式执行的,DPC 时间的百分比为特权时间 百分比的一部分。这些时间单独计算并且不属于间隔计算总数的一部 分。这个总数显示了作为实例时间百分比的平均忙时。  
      
      2、%Processor Time计数器 如果该参数值持续超过95%,表明瓶颈是CPU。可以考虑增加一个处理器或换一个更快的处理器。  
      
      3、% Privileged Time 指非闲置处理器时间用于特权模式的百分比。(特权模式是为操作系统组件和操纵硬件驱动程序而设计的一种处理模式。它允许直接访问硬件和所有内存。另一种模式为用户模式,它是一种为应用程序、环境分系统和整数分系统设计的一种有限处理模式。操作系统将应用程序线程转换成特权模式以访问操作系统服务)。 特权时间的 % 包括为间断和 DPC 提供服务的时间。特权时间比率高可能是由于失败设备产生的大数量的间隔而引起的。这个计数器将平均忙时作为样本时间的一部分显示。  
      
      4、% User Time表示耗费CPU的数据库操作,如排序,执行aggregate functions等。如果该值很高,可考虑增加索引,尽量使用简单的表联接,水平分割大表格等方法来降低该值。 Physical Disk: Curretn Disk Queue Length计数器该值应不超过磁盘数的1.5~2倍。要提高性能,可增加磁盘。 SQLServer:Cache Hit Ratio计数器该值越高越好。如果持续低于80%,应考虑增加内存。 注意该参数值是从SQL Server启动后,就一直累加记数,所以运行经过一段时间后,该值将不能反映系统当前值。  
      
      47、分析select emp_name form employee where salary > 3000 在此语句中若salary是Float类型的,则优化器对其进行优化为Convert(float,3000),因为3000是个整数,我们应在编程时使用3000.0而不要等运行时让DBMS进行转化。同样字符和整型数据的转换。  
      
      48、查询的关联同写的顺序 select a.personMemberID, * from chineseresume a,personmember b where personMemberID = b.referenceid and a.personMemberID = 'JCNPRH39681' (A = B ,B = ‘号码') select a.personMemberID, * from chineseresume a,personmember b where a.personMemberID = b.referenceid and a.personMemberID = 'JCNPRH39681' and b.referenceid = 'JCNPRH39681' (A = B ,B = ‘号码', A = ‘号码') select a.personMemberID, * from chineseresume a,personmember b where b.referenceid = 'JCNPRH39681' and a.personMemberID = 'JCNPRH39681' (B = ‘号码', A = ‘号码')  

    读者对像:

    开发人员:如果你是做数据库开发,那本文的内容非常适合,因为本文是从程序员的角度来谈数据库性能优化。

    架构师:如果你已经是数据库应用的架构师,那本文的知识你应该清楚90%,否则你可能是一个喜欢折腾的架构师。

    DBA(数据库管理员):大型数据库优化的知识非常复杂,本文只是从程序员的角度来谈性能优化,DBA除了需要了解这些知识外,还需要深入数据库的内部体系架构来解决问题。

    1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。


    2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

    select id from t where num is null

    最好不要给数据库留NULL,尽可能的使用 NOT NULL填充数据库.

    备注、描述、评论之类的可以设置为 NULL,其他的,最好不要使用NULL。

    不要以为 NULL 不需要空间,比如:char(100) 型,在字段建立时,空间就固定了, 不管是否插入值(NULL也包含在内),都是占用 100个字符的空间的,如果是varchar这样的变长字段, null 不占用空间。


    可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

    select id from t where num = 0


    3.应尽量避免在 where 子句中使用 != 或 <> 操作符,否则将引擎放弃使用索引而进行全表扫描。

    4.应尽量避免在 where 子句中使用 or 来连接条件,如果一个字段有索引,一个字段没有索引,将导致引擎放弃使用索引而进行全表扫描,如:

    select id from t where num=10 or Name = 'admin'

    可以这样查询:

    select id from t where num = 10
    union all
    select id from t where Name = 'admin'


    5.in 和 not in 也要慎用,否则会导致全表扫描,如:

    select id from t where num in(1,2,3)

    对于连续的数值,能用 between 就不要用 in 了:

    select id from t where num between 1 and 3

    很多时候用 exists 代替 in 是一个好的选择:

    select num from a where num in(select num from b)

    用下面的语句替换:

    select num from a where exists(select 1 from b where num=a.num)

    6.下面的查询也将导致全表扫描:

    select id from t where name like ‘%abc%’

    若要提高效率,可以考虑全文检索。

    7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

    select id from t where num = @num

    可以改为强制查询使用索引:

    select id from t with(index(索引名)) where num = @num

    .应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

    select id from t where num/2 = 100

    应改为:

    select id from t where num = 100*2


    9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:

    select id from t where substring(name,1,3) = ’abc’       -–name以abc开头的id
    select id from t where datediff(day,createdate,’2005-11-30′) = 0    -–‘2005-11-30’    --生成的id

    应改为:

    select id from t where name like 'abc%'
    select id from t where createdate >= '2005-11-30' and createdate < '2005-12-1'


    10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

    11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

    12.不要写一些没有意义的查询,如需要生成一个空表结构:

    select col1,col2 into #t from t where 1=0

    这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
    create table #t(…)

    13.Update 语句,如果只更改1、2个字段,不要Update全部字段,否则频繁调用会引起明显的性能消耗,同时带来大量日志。

    14.对于多张大数据量(这里几百条就算大了)的表JOIN,要先分页再JOIN,否则逻辑读会很高,性能很差。

    15.select count(*) from table;这样不带任何条件的count会引起全表扫描,并且没有任何业务意义,是一定要杜绝的。


    16.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。

    17.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

    18.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连 接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

    19.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

    20.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

    21.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

    22. 避免频繁创建和删除临时表,以减少系统表资源的消耗。临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件, 最好使用导出表。

    23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

    24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

    25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

    26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

    27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

    28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

    29.尽量避免大事务操作,提高系统并发能力。

    30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

    实际案例分析:拆分大的 DELETE 或INSERT 语句,批量提交SQL语句
      如果你需要在一个在线的网站上去执行一个大的 DELETE 或 INSERT 查询,你需要非常小心,要避免你的操作让你的整个网站停止相应。因为这两个操作是会锁表的,表一锁住了,别的操作都进不来了。
      Apache 会有很多的子进程或线程。所以,其工作起来相当有效率,而我们的服务器也不希望有太多的子进程,线程和数据库链接,这是极大的占服务器资源的事情,尤其是内存。
      如果你把你的表锁上一段时间,比如30秒钟,那么对于一个有很高访问量的站点来说,这30秒所积累的访问进程/线程,数据库链接,打开的文件数,可能不仅仅会让你的WEB服务崩溃,还可能会让你的整台服务器马上挂了。
      所以,如果你有一个大的处理,你一定把其拆分,使用 LIMIT oracle(rownum),sqlserver(top)条件是一个好的方法。下面是一个mysql示例:
     

    while(1){
    
       //每次只做1000条
    
       mysql_query(“delete from logs where log_date <= ’2012-11-01’ limit 1000”);
    
       if(mysql_affected_rows() == 0){
    
         //删除完成,退出!
         break;
      }
    
    //每次暂停一段时间,释放表让其他进程/线程访问。
    usleep(50000)
    
    }

    在网上有很多文章介绍数据库优化知识,但是大部份文章只是对某个一个方面进行说明,而对于我们程序员来说这种介绍并不能很好的掌握优化知识,因为很多介绍只是对一些特定的场景优化的,所以反而有时会产生误导或让程序员感觉不明白其中的奥妙而对数据库优化感觉很神秘。

    很多程序员总是问如何学习数据库优化,有没有好的教材之类的问题。在书店也看到了许多数据库优化的专业书籍,但是感觉更多是面向DBA或者是PL/SQL开发方面的知识,个人感觉不太适合普通程序员。而要想做到数据库优化的高手,不是花几周,几个月就能达到的,这并不是因为数据库优化有多高深,而是因为要做好优化一方面需要有非常好的技术功底,对操作系统、存储硬件网络、数据库原理等方面有比较扎实的基础知识,另一方面是需要花大量时间对特定的数据库进行实践测试与总结。

    作为一个程序员,我们也许不清楚线上正式的服务器硬件配置,我们不可能像DBA那样专业的对数据库进行各种实践测试与总结,但我们都应该非常了解我们SQL的业务逻辑,我们清楚SQL中访问表及字段的数据情况,我们其实只关心我们的SQL是否能尽快返回结果。那程序员如何利用已知的知识进行数据库优化?如何能快速定位SQL性能问题并找到正确的优化方向?

    面对这些问题,笔者总结了一些面向程序员的基本优化法则,本文将结合实例来坦述数据库开发的优化知识。

    一、数据库访问优化法则简介

    要正确的优化SQL,我们需要快速定位能性的瓶颈点,也就是说快速找到我们SQL主要的开销在哪里?而大多数情况性能最慢的设备会是瓶颈点,如下载时网络速度可能会是瓶颈点,本地复制文件时硬盘可能会是瓶颈点,为什么这些一般的工作我们能快速确认瓶颈点呢,因为我们对这些慢速设备的性能数据有一些基本的认识,如网络带宽是2Mbps,硬盘是每分钟7200转等等。因此,为了快速找到SQL的性能瓶颈点,我们也需要了解我们计算机系统的硬件基本性能指标,下图展示的当前主流计算机性能指标数据。

     

     

    从图上可以看到基本上每种设备都有两个指标:

    延时(响应时间):表示硬件的突发处理能力;

    带宽(吞吐量):代表硬件持续处理能力。

    从上图可以看出,计算机系统硬件性能从高到代依次为:

    CPU——Cache(L1-L2-L3)——内存——SSD硬盘——网络——硬盘

    由于SSD硬盘还处于快速发展阶段,所以本文的内容不涉及SSD相关应用系统。

    根据数据库知识,我们可以列出每种硬件主要的工作内容:

    CPU及内存:缓存数据访问、比较、排序、事务检测、SQL解析、函数或逻辑运算;

    网络:结果数据传输、SQL请求、远程数据库访问(dblink);

    硬盘:数据访问、数据写入、日志记录、大数据量排序、大表连接。

    根据当前计算机硬件的基本性能指标及其在数据库中主要操作内容,可以整理出如下图所示的性能基本优化法则:

      

    这个优化法则归纳为5个层次:

    1、  减少数据访问(减少磁盘访问)

    2、  返回更少数据(减少网络传输或磁盘访问)

    3、  减少交互次数(减少网络传输)

    4、  减少服务器CPU开销(减少CPU及内存开销)

    5、  利用更多资源(增加资源)

    由于每一层优化法则都是解决其对应硬件的性能问题,所以带来的性能提升比例也不一样。传统数据库系统设计是也是尽可能对低速设备提供优化方法,因此针对低速设备问题的可优化手段也更多,优化成本也更低。我们任何一个SQL的性能优化都应该按这个规则由上到下来诊断问题并提出解决方案,而不应该首先想到的是增加资源解决问题。

    以下是每个优化法则层级对应优化效果及成本经验参考:

    优化法则

    性能提升效果

    优化成本

    减少数据访问

    1~1000

    返回更少数据

    1~100

    减少交互次数

    1~20

    减少服务器CPU开销

    1~5

    利用更多资源

    @~10

    接下来,我们针对5种优化法则列举常用的优化手段并结合实例分析。

    二、Oracle数据库两个基本概念

    数据块(Block)

    数据块是数据库中数据在磁盘中存储的最小单位,也是一次IO访问的最小单位,一个数据块通常可以存储多条记录,数据块大小是DBA在创建数据库或表空间时指定,可指定为2K、4K、8K、16K或32K字节。下图是一个Oracle数据库典型的物理结构,一个数据库可以包括多个数据文件,一个数据文件内又包含多个数据块;

    ROWID

    ROWID是每条记录在数据库中的唯一标识,通过ROWID可以直接定位记录到对应的文件号及数据块位置。ROWID内容包括文件号、对像号、数据块号、记录槽号,如下图所示:

     

    三、数据库访问优化法则详解

    1、减少数据访问

    1.1、创建并使用正确的索引

    数据库索引的原理非常简单,但在复杂的表中真正能正确使用索引的人很少,即使是专业的DBA也不一定能完全做到最优。

    索引会大大增加表记录的DML(INSERT,UPDATE,DELETE)开销,正确的索引可以让性能提升100,1000倍以上,不合理的索引也可能会让性能下降100倍,因此在一个表中创建什么样的索引需要平衡各种业务需求。

    索引常见问题:

    索引有哪些种类?

    常见的索引有B-TREE索引、位图索引、全文索引,位图索引一般用于数据仓库应用,全文索引由于使用较少,这里不深入介绍。B-TREE索引包括很多扩展类型,如组合索引、反向索引、函数索引等等,以下是B-TREE索引的简单介绍:

    B-TREE索引也称为平衡树索引(Balance Tree),它是一种按字段排好序的树形目录结构,主要用于提升查询性能和唯一约束支持。B-TREE索引的内容包括根节点、分支节点、叶子节点。

    叶子节点内容:索引字段内容+表记录ROWID

    根节点,分支节点内容:当一个数据块中不能放下所有索引字段数据时,就会形成树形的根节点或分支节点,根节点与分支节点保存了索引树的顺序及各层级间的引用关系。

             一个普通的BTREE索引结构示意图如下所示:

    如果我们把一个表的内容认为是一本字典,那索引就相当于字典的目录,如下图所示:

     

    图中是一个字典按部首+笔划数的目录,相当于给字典建了一个按部首+笔划的组合索引。

    一个表中可以建多个索引,就如一本字典可以建多个目录一样(按拼音、笔划、部首等等)。

    一个索引也可以由多个字段组成,称为组合索引,如上图就是一个按部首+笔划的组合目录。

    SQL什么条件会使用索引?

    当字段上建有索引时,通常以下情况会使用索引:

    INDEX_COLUMN = ?

    INDEX_COLUMN > ?

    INDEX_COLUMN >= ?

    INDEX_COLUMN < ?

    INDEX_COLUMN <= ?

    INDEX_COLUMN between ? and ?

    INDEX_COLUMN in (?,?,...,?)

    INDEX_COLUMN like ?||'%'(后导模糊查询)

    T1. INDEX_COLUMN=T2. COLUMN1(两个表通过索引字段关联)

    SQL什么条件不会使用索引?

    查询条件

    不能使用索引原因

    INDEX_COLUMN <> ?

    INDEX_COLUMN not in (?,?,...,?)

    不等于操作不能使用索引

    function(INDEX_COLUMN) = ?

    INDEX_COLUMN + 1 = ?

    INDEX_COLUMN || 'a' = ?

    经过普通运算或函数运算后的索引字段不能使用索引

    INDEX_COLUMN like '%'||?

    INDEX_COLUMN like '%'||?||'%'

    含前导模糊查询的Like语法不能使用索引

    INDEX_COLUMN is null

    B-TREE索引里不保存字段为NULL值记录,因此IS NULL不能使用索引

    NUMBER_INDEX_COLUMN='12345'

    CHAR_INDEX_COLUMN=12345

    Oracle在做数值比较时需要将两边的数据转换成同一种数据类型,如果两边数据类型不同时会对字段值隐式转换,相当于加了一层函数处理,所以不能使用索引。

    a.INDEX_COLUMN=a.COLUMN_1

    给索引查询的值应是已知数据,不能是未知字段值。

    注:

    经过函数运算字段的字段要使用可以使用函数索引,这种需求建议与DBA沟通。

    有时候我们会使用多个字段的组合索引,如果查询条件中第一个字段不能使用索引,那整个查询也不能使用索引

    如:我们company表建了一个id+name的组合索引,以下SQL是不能使用索引的

    Select * from company where name=?

    Oracle9i后引入了一种index skip scan的索引方式来解决类似的问题,但是通过index skip scan提高性能的条件比较特殊,使用不好反而性能会更差。

    我们一般在什么字段上建索引?

    这是一个非常复杂的话题,需要对业务及数据充分分析后再能得出结果。主键及外键通常都要有索引,其它需要建索引的字段应满足以下条件:

    1、字段出现在查询条件中,并且查询条件可以使用索引;

    2、语句执行频率高,一天会有几千次以上;

    3、通过字段条件可筛选的记录集很小,那数据筛选比例是多少才适合?

    这个没有固定值,需要根据表数据量来评估,以下是经验公式,可用于快速评估:

    小表(记录数小于10000行的表):筛选比例<10%

    大表:(筛选返回记录数)<(表总记录数*单条记录长度)/10000/16

          单条记录长度≈字段平均内容长度之和+字段数*2

    以下是一些字段是否需要建B-TREE索引的经验分类:

     

    字段类型

    常见字段名

    需要建索引的字段

    主键

    ID,PK

    外键

    PRODUCT_ID,COMPANY_ID,MEMBER_ID,ORDER_ID,TRADE_ID,PAY_ID

    有对像或身份标识意义字段

    HASH_CODE,USERNAME,IDCARD_NO,EMAIL,TEL_NO,IM_NO

    索引慎用字段,需要进行数据分布及使用场景详细评估

    日期

    GMT_CREATE,GMT_MODIFIED

    年月

    YEAR,MONTH

    状态标志

    PRODUCT_STATUS,ORDER_STATUS,IS_DELETE,VIP_FLAG

    类型

    ORDER_TYPE,IMAGE_TYPE,GENDER,CURRENCY_TYPE

    区域

    COUNTRY,PROVINCE,CITY

    操作人员

    CREATOR,AUDITOR

    数值

    LEVEL,AMOUNT,SCORE

    长字符

    ADDRESS,COMPANY_NAME,SUMMARY,SUBJECT

    不适合建索引的字段

    描述备注

    DESCRIPTION,REMARK,MEMO,DETAIL

    大字段

    FILE_CONTENT,EMAIL_CONTENT

    如何知道SQL是否使用了正确的索引?

    简单SQL可以根据索引使用语法规则判断,复杂的SQL不好办,判断SQL的响应时间是一种策略,但是这会受到数据量、主机负载及缓存等因素的影响,有时数据全在缓存里,可能全表访问的时间比索引访问时间还少。要准确知道索引是否正确使用,需要到数据库中查看SQL真实的执行计划,这个话题比较复杂,详见SQL执行计划专题介绍。

    索引对DML(INSERT,UPDATE,DELETE)附加的开销有多少?

    这个没有固定的比例,与每个表记录的大小及索引字段大小密切相关,以下是一个普通表测试数据,仅供参考:

    索引对于Insert性能降低56%

    索引对于Update性能降低47%

    索引对于Delete性能降低29%

    因此对于写IO压力比较大的系统,表的索引需要仔细评估必要性,另外索引也会占用一定的存储空间。

    1.2、只通过索引访问数据

    有些时候,我们只是访问表中的几个字段,并且字段内容较少,我们可以为这几个字段单独建立一个组合索引,这样就可以直接只通过访问索引就能得到数据,一般索引占用的磁盘空间比表小很多,所以这种方式可以大大减少磁盘IO开销。

    如:select id,name from company where type='2';

    如果这个SQL经常使用,我们可以在type,id,name上创建组合索引

    create index my_comb_index on company(type,id,name);

    有了这个组合索引后,SQL就可以直接通过my_comb_index索引返回数据,不需要访问company表。

    还是拿字典举例:有一个需求,需要查询一本汉语字典中所有汉字的个数,如果我们的字典没有目录索引,那我们只能从字典内容里一个一个字计数,最后返回结果。如果我们有一个拼音目录,那就可以只访问拼音目录的汉字进行计数。如果一本字典有1000页,拼音目录有20页,那我们的数据访问成本相当于全表访问的50分之一。

    切记,性能优化是无止境的,当性能可以满足需求时即可,不要过度优化。在实际数据库中我们不可能把每个SQL请求的字段都建在索引里,所以这种只通过索引访问数据的方法一般只用于核心应用,也就是那种对核心表访问量最高且查询字段数据量很少的查询。

    1.3、优化SQL执行计划

    SQL执行计划是关系型数据库最核心的技术之一,它表示SQL执行时的数据访问算法。由于业务需求越来越复杂,表数据量也越来越大,程序员越来越懒惰,SQL也需要支持非常复杂的业务逻辑,但SQL的性能还需要提高,因此,优秀的关系型数据库除了需要支持复杂的SQL语法及更多函数外,还需要有一套优秀的算法库来提高SQL性能。

    目前ORACLE有SQL执行计划的算法约300种,而且一直在增加,所以SQL执行计划是一个非常复杂的课题,一个普通DBA能掌握50种就很不错了,就算是资深DBA也不可能把每个执行计划的算法描述清楚。虽然有这么多种算法,但并不表示我们无法优化执行计划,因为我们常用的SQL执行计划算法也就十几个,如果一个程序员能把这十几个算法搞清楚,那就掌握了80%的SQL执行计划调优知识。

    由于篇幅的原因,SQL执行计划需要专题介绍,在这里就不多说了。

    2、返回更少的数据

    2.1、数据分页处理

    一般数据分页方式有:

    2.1.1、客户端(应用程序或浏览器)分页

    将数据从应用服务器全部下载到本地应用程序或浏览器,在应用程序或浏览器内部通过本地代码进行分页处理

    优点:编码简单,减少客户端与应用服务器网络交互次数

    缺点:首次交互时间长,占用客户端内存

    适应场景:客户端与应用服务器网络延时较大,但要求后续操作流畅,如手机GPRS,超远程访问(跨国)等等。

    2.1.2、应用服务器分页

    将数据从数据库服务器全部下载到应用服务器,在应用服务器内部再进行数据筛选。以下是一个应用服务器端Java程序分页的示例:

    List list=executeQuery(“select * from employee order by id”);

    Int count= list.size();

    List subList= list.subList(10, 20);

    优点:编码简单,只需要一次SQL交互,总数据与分页数据差不多时性能较好。

    缺点:总数据量较多时性能较差。

    适应场景:数据库系统不支持分页处理,数据量较小并且可控。

    2.1.3、数据库SQL分页

    采用数据库SQL分页需要两次SQL完成

    一个SQL计算总数量

    一个SQL返回分页后的数据

    优点:性能好

    缺点:编码复杂,各种数据库语法不同,需要两次SQL交互。

    oracle数据库一般采用rownum来进行分页,常用分页语法有如下两种:

    直接通过rownum分页:

    select * from (

             select a.*,rownum rn from

                       (select * from product a where company_id=? order by status) a

             where rownum<=20)

    where rn>10;

    数据访问开销=索引IO+索引全部记录结果对应的表数据IO

    采用rowid分页语法

    优化原理是通过纯索引找出分页记录的ROWID,再通过ROWID回表返回数据,要求内层查询和排序字段全在索引里。

    create index myindex on product(company_id,status);

    select b.* from (

             select * from (

                       select a.*,rownum rn from

                                (select rowid rid,status from product a where company_id=? order by status) a

                       where rownum<=20)

             where rn>10) a, product b

    where a.rid=b.rowid;

    数据访问开销=索引IO+索引分页结果对应的表数据IO

    实例:

    一个公司产品有1000条记录,要分页取其中20个产品,假设访问公司索引需要50个IO,2条记录需要1个表数据IO。

    那么按第一种ROWNUM分页写法,需要550(50+1000/2)个IO,按第二种ROWID分页写法,只需要60个IO(50+20/2);

    2.2、只返回需要的字段

    通过去除不必要的返回字段可以提高性能,例:

    调整前:select * from product where company_id=?;

    调整后:select id,name from product where company_id=?;

    优点:

    1、减少数据在网络上传输开销

    2、减少服务器数据处理开销

    3、减少客户端内存占用

    4、字段变更时提前发现问题,减少程序BUG

    5、如果访问的所有字段刚好在一个索引里面,则可以使用纯索引访问提高性能。

    缺点:增加编码工作量

    由于会增加一些编码工作量,所以一般需求通过开发规范来要求程序员这么做,否则等项目上线后再整改工作量更大。

    如果你的查询表中有大字段或内容较多的字段,如备注信息、文件内容等等,那在查询表时一定要注意这方面的问题,否则可能会带来严重的性能问题。如果表经常要查询并且请求大内容字段的概率很低,我们可以采用分表处理,将一个大表分拆成两个一对一的关系表,将不常用的大内容字段放在一张单独的表中。如一张存储上传文件的表:

    T_FILE(ID,FILE_NAME,FILE_SIZE,FILE_TYPE,FILE_CONTENT)

    我们可以分拆成两张一对一的关系表:

    T_FILE(ID,FILE_NAME,FILE_SIZE,FILE_TYPE)

    T_FILECONTENT(ID, FILE_CONTENT)

             通过这种分拆,可以大大提少T_FILE表的单条记录及总大小,这样在查询T_FILE时性能会更好,当需要查询FILE_CONTENT字段内容时再访问T_FILECONTENT表。

    3、减少交互次数

    3.1、batch DML

    数据库访问框架一般都提供了批量提交的接口,jdbc支持batch的提交处理方法,当你一次性要往一个表中插入1000万条数据时,如果采用普通的executeUpdate处理,那么和服务器交互次数为1000万次,按每秒钟可以向数据库服务器提交10000次估算,要完成所有工作需要1000秒。如果采用批量提交模式,1000条提交一次,那么和服务器交互次数为1万次,交互次数大大减少。采用batch操作一般不会减少很多数据库服务器的物理IO,但是会大大减少客户端与服务端的交互次数,从而减少了多次发起的网络延时开销,同时也会降低数据库的CPU开销。

    假设要向一个普通表插入1000万数据,每条记录大小为1K字节,表上没有任何索引,客户端与数据库服务器网络是100Mbps,以下是根据现在一般计算机能力估算的各种batch大小性能对比值:

     单位:ms

    No batch

    Batch=10

    Batch=100

    Batch=1000

    Batch=10000

    服务器事务处理时间

    0.1

    0.1

    0.1

    0.1

    0.1

    服务器IO处理时间

    0.02

    0.2

    2

    20

    200

    网络交互发起时间

    0.1

    0.1

    0.1

    0.1

    0.1

    网络数据传输时间

    0.01

    0.1

    1

    10

    100

    小计

    0.23

    0.5

    3.2

    30.2

    300.2

    平均每条记录处理时间

    0.23

    0.05

    0.032

    0.0302

    0.03002

    从上可以看出,Insert操作加大Batch可以对性能提高近8倍性能,一般根据主键的Update或Delete操作也可能提高2-3倍性能,但不如Insert明显,因为Update及Delete操作可能有比较大的开销在物理IO访问。以上仅是理论计算值,实际情况需要根据具体环境测量。

    3.2、In List

    很多时候我们需要按一些ID查询数据库记录,我们可以采用一个ID一个请求发给数据库,如下所示:

    for :var in ids[] do begin

      select * from mytable where id=:var;

    end;

    我们也可以做一个小的优化, 如下所示,用ID INLIST的这种方式写SQL:

    select * from mytable where id in(:id1,id2,...,idn);

    通过这样处理可以大大减少SQL请求的数量,从而提高性能。那如果有10000个ID,那是不是全部放在一条SQL里处理呢?答案肯定是否定的。首先大部份数据库都会有SQL长度和IN里个数的限制,如ORACLE的IN里就不允许超过1000个值

    另外当前数据库一般都是采用基于成本的优化规则,当IN数量达到一定值时有可能改变SQL执行计划,从索引访问变成全表访问,这将使性能急剧变化。随着SQL中IN的里面的值个数增加,SQL的执行计划会更复杂,占用的内存将会变大,这将会增加服务器CPU及内存成本。

    评估在IN里面一次放多少个值还需要考虑应用服务器本地内存的开销,有并发访问时要计算本地数据使用周期内的并发上限,否则可能会导致内存溢出。

    综合考虑,一般IN里面的值个数超过20个以后性能基本没什么太大变化,也特别说明不要超过100,超过后可能会引起执行计划的不稳定性及增加数据库CPU及内存成本,这个需要专业DBA评估。

    3.3、设置Fetch Size

    当我们采用select从数据库查询数据时,数据默认并不是一条一条返回给客户端的,也不是一次全部返回客户端的,而是根据客户端fetch_size参数处理,每次只返回fetch_size条记录,当客户端游标遍历到尾部时再从服务端取数据,直到最后全部传送完成。所以如果我们要从服务端一次取大量数据时,可以加大fetch_size,这样可以减少结果数据传输的交互次数及服务器数据准备时间,提高性能。

    以下是jdbc测试的代码,采用本地数据库,表缓存在数据库CACHE中,因此没有网络连接及磁盘IO开销,客户端只遍历游标,不做任何处理,这样更能体现fetch参数的影响:

    String vsql ="select * from t_employee";

    PreparedStatement pstmt = conn.prepareStatement(vsql,ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY);

    pstmt.setFetchSize(1000);

    ResultSet rs = pstmt.executeQuery(vsql);

    int cnt = rs.getMetaData().getColumnCount();

    Object o;

    while (rs.next()) {

        for (int i = 1; i <= cnt; i++) {

           o = rs.getObject(i);

        }

    }

    测试示例中的employee表有100000条记录,每条记录平均长度135字节

    以下是测试结果,对每种fetchsize测试5次再取平均值:

    fetchsize

     elapse_time(s)

    1

    20.516

    2

    11.34

    4

    6.894

    8

    4.65

    16

    3.584

    32

    2.865

    64

    2.656

    128

    2.44

    256

    2.765

    512

    3.075

    1024

    2.862

    2048

    2.722

    4096

    2.681

    8192

    2.715

    Oracle jdbc fetchsize默认值为10,由上测试可以看出fetchsize对性能影响还是比较大的,但是当fetchsize大于100时就基本上没有影响了。fetchsize并不会存在一个最优的固定值,因为整体性能与记录集大小及硬件平台有关。根据测试结果建议当一次性要取大量数据时这个值设置为100左右,不要小于40。注意,fetchsize不能设置太大,如果一次取出的数据大于JVM的内存会导致内存溢出,所以建议不要超过1000,太大了也没什么性能提高,反而可能会增加内存溢出的危险。

    注:图中fetchsize在128以后会有一些小的波动,这并不是测试误差,而是由于resultset填充到具体对像时间不同的原因,由于resultset已经到本地内存里了,所以估计是由于CPU的L1,L2 Cache命中率变化造成,由于变化不大,所以笔者也未深入分析原因。

    iBatis的SqlMapping配置文件可以对每个SQL语句指定fetchsize大小,如下所示:

    <select id="getAllProduct" resultMap="HashMap" fetchSize="1000">

    select * from employee

    </select>

    3.4、使用存储过程

    大型数据库一般都支持存储过程,合理的利用存储过程也可以提高系统性能。如你有一个业务需要将A表的数据做一些加工然后更新到B表中,但是又不可能一条SQL完成,这时你需要如下3步操作:

    a:将A表数据全部取出到客户端;

    b:计算出要更新的数据;

    c:将计算结果更新到B表。

    如果采用存储过程你可以将整个业务逻辑封装在存储过程里,然后在客户端直接调用存储过程处理,这样可以减少网络交互的成本。

    当然,存储过程也并不是十全十美,存储过程有以下缺点:

    a、不可移植性,每种数据库的内部编程语法都不太相同,当你的系统需要兼容多种数据库时最好不要用存储过程。

    b、学习成本高,DBA一般都擅长写存储过程,但并不是每个程序员都能写好存储过程,除非你的团队有较多的开发人员熟悉写存储过程,否则后期系统维护会产生问题。

    c、业务逻辑多处存在,采用存储过程后也就意味着你的系统有一些业务逻辑不是在应用程序里处理,这种架构会增加一些系统维护和调试成本。

    d、存储过程和常用应用程序语言不一样,它支持的函数及语法有可能不能满足需求,有些逻辑就只能通过应用程序处理。

    e、如果存储过程中有复杂运算的话,会增加一些数据库服务端的处理成本,对于集中式数据库可能会导致系统可扩展性问题。

    f、为了提高性能,数据库会把存储过程代码编译成中间运行代码(类似于java的class文件),所以更像静态语言。当存储过程引用的对像(表、视图等等)结构改变后,存储过程需要重新编译才能生效,在24*7高并发应用场景,一般都是在线变更结构的,所以在变更的瞬间要同时编译存储过程,这可能会导致数据库瞬间压力上升引起故障(Oracle数据库就存在这样的问题)。

    个人观点:普通业务逻辑尽量不要使用存储过程,定时性的ETL任务或报表统计函数可以根据团队资源情况采用存储过程处理。

    3.5、优化业务逻辑

    要通过优化业务逻辑来提高性能是比较困难的,这需要程序员对所访问的数据及业务流程非常清楚。

    举一个案例:

    某移动公司推出优惠套参,活动对像为VIP会员并且2010年1,2,3月平均话费20元以上的客户。

    那我们的检测逻辑为:

    select avg(money) as avg_money from bill where phone_no='13988888888' and date between '201001' and '201003';

    select vip_flag from member where phone_no='13988888888';

    if avg_money>20 and vip_flag=true then

    begin

      执行套参();

    end;

    如果我们修改业务逻辑为:

    select avg(money) as  avg_money from bill where phone_no='13988888888' and date between '201001' and '201003';

    if avg_money>20 then

    begin

      select vip_flag from member where phone_no='13988888888';

      if vip_flag=true then

      begin

        执行套参();

      end;

    end;

    通过这样可以减少一些判断vip_flag的开销,平均话费20元以下的用户就不需要再检测是否VIP了。

    如果程序员分析业务,VIP会员比例为1%,平均话费20元以上的用户比例为90%,那我们改成如下:

    select vip_flag from member where phone_no='13988888888';

    if vip_flag=true then

    begin

      select avg(money) as avg_money from bill where phone_no='13988888888' and date between '201001' and '201003';

      if avg_money>20 then

      begin

        执行套参();

      end;

    end;

    这样就只有1%的VIP会员才会做检测平均话费,最终大大减少了SQL的交互次数。

    以上只是一个简单的示例,实际的业务总是比这复杂得多,所以一般只是高级程序员更容易做出优化的逻辑,但是我们需要有这样一种成本优化的意识。

    3.6、使用ResultSet游标处理记录

    现在大部分Java框架都是通过jdbc从数据库取出数据,然后装载到一个list里再处理,list里可能是业务Object,也可能是hashmap。

    由于JVM内存一般都小于4G,所以不可能一次通过sql把大量数据装载到list里。为了完成功能,很多程序员喜欢采用分页的方法处理,如一次从数据库取1000条记录,通过多次循环搞定,保证不会引起JVM Out of memory问题。

    以下是实现此功能的代码示例,t_employee表有10万条记录,设置分页大小为1000:

    d1 = Calendar.getInstance().getTime();

    vsql = "select count(*) cnt from t_employee";

    pstmt = conn.prepareStatement(vsql);

    ResultSet rs = pstmt.executeQuery();

    Integer cnt = 0;

    while (rs.next()) {

             cnt = rs.getInt("cnt");

    }

    Integer lastid=0;

    Integer pagesize=1000;

    System.out.println("cnt:" + cnt);

    String vsql = "select count(*) cnt from t_employee";

    PreparedStatement pstmt = conn.prepareStatement(vsql);

    ResultSet rs = pstmt.executeQuery();

    Integer cnt = 0;

    while (rs.next()) {

             cnt = rs.getInt("cnt");

    }

    Integer lastid = 0;

    Integer pagesize = 1000;

    System.out.println("cnt:" + cnt);

    for (int i = 0; i <= cnt / pagesize; i++) {

             vsql = "select * from (select * from t_employee where id>? order by id) where rownum<=?";

             pstmt = conn.prepareStatement(vsql);

             pstmt.setFetchSize(1000);

             pstmt.setInt(1, lastid);

             pstmt.setInt(2, pagesize);

             rs = pstmt.executeQuery();

             int col_cnt = rs.getMetaData().getColumnCount();

             Object o;

             while (rs.next()) {

                       for (int j = 1; j <= col_cnt; j++) {

                                o = rs.getObject(j);

                       }

                       lastid = rs.getInt("id");

             }

             rs.close();

             pstmt.close();

    }

    以上代码实际执行时间为6.516秒

    很多持久层框架为了尽量让程序员使用方便,封装了jdbc通过statement执行数据返回到resultset的细节,导致程序员会想采用分页的方式处理问题。实际上如果我们采用jdbc原始的resultset游标处理记录,在resultset循环读取的过程中处理记录,这样就可以一次从数据库取出所有记录。显著提高性能。

    这里需要注意的是,采用resultset游标处理记录时,应该将游标的打开方式设置为FORWARD_READONLY模式(ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY),否则会把结果缓存在JVM里,造成JVM Out of memory问题。

    代码示例:

    String vsql ="select * from t_employee";

    PreparedStatement pstmt = conn.prepareStatement(vsql,ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY);

    pstmt.setFetchSize(100);

    ResultSet rs = pstmt.executeQuery(vsql);

    int col_cnt = rs.getMetaData().getColumnCount();

    Object o;

    while (rs.next()) {

             for (int j = 1; j <= col_cnt; j++) {

                       o = rs.getObject(j);

             }

    }

    调整后的代码实际执行时间为3.156秒

    从测试结果可以看出性能提高了1倍多,如果采用分页模式数据库每次还需发生磁盘IO的话那性能可以提高更多。

    iBatis等持久层框架考虑到会有这种需求,所以也有相应的解决方案,在iBatis里我们不能采用queryForList的方法,而应用该采用queryWithRowHandler加回调事件的方式处理,如下所示:

    MyRowHandler myrh=new MyRowHandler();

    sqlmap.queryWithRowHandler("getAllEmployee", myrh);

    class MyRowHandler implements RowHandler {

        public void handleRow(Object o) {

           //todo something

        }

    }

    iBatis的queryWithRowHandler很好的封装了resultset遍历的事件处理,效果及性能与resultset遍历一样,也不会产生JVM内存溢出。

    4、减少数据库服务器CPU运算

    4.1、使用绑定变量

    绑定变量是指SQL中对变化的值采用变量参数的形式提交,而不是在SQL中直接拼写对应的值。

    非绑定变量写法:Select * from employee where id=1234567

    绑定变量写法:

    Select * from employee where id=?

    Preparestatement.setInt(1,1234567)

    Java中Preparestatement就是为处理绑定变量提供的对像,绑定变量有以下优点:

    1、防止SQL注入

    2、提高SQL可读性

    3、提高SQL解析性能,不使用绑定变更我们一般称为硬解析,使用绑定变量我们称为软解析。

    第1和第2点很好理解,做编码的人应该都清楚,这里不详细说明。关于第3点,到底能提高多少性能呢,下面举一个例子说明:

    假设有这个这样的一个数据库主机:

    2个4核CPU 

    100块磁盘,每个磁盘支持IOPS为160

    业务应用的SQL如下:

    select * from table where pk=?

    这个SQL平均4个IO(3个索引IO+1个数据IO)

    IO缓存命中率75%(索引全在内存中,数据需要访问磁盘)

    SQL硬解析CPU消耗:1ms  (常用经验值)

    SQL软解析CPU消耗:0.02ms(常用经验值)

    假设CPU每核性能是线性增长,访问内存Cache中的IO时间忽略,要求计算系统对如上应用采用硬解析与采用软解析支持的每秒最大并发数:

    是否使用绑定变量

    CPU支持最大并发数

    磁盘IO支持最大并发数

    不使用

    2*4*1000=8000

    100*160=16000

    使用

    2*4*1000/0.02=400000

    100*160=16000

    从以上计算可以看出,不使用绑定变量的系统当并发达到8000时会在CPU上产生瓶颈,当使用绑定变量的系统当并行达到16000时会在磁盘IO上产生瓶颈。所以如果你的系统CPU有瓶颈时请先检查是否存在大量的硬解析操作。

    使用绑定变量为何会提高SQL解析性能,这个需要从数据库SQL执行原理说明,一条SQL在Oracle数据库中的执行过程如下图所示:

    当一条SQL发送给数据库服务器后,系统首先会将SQL字符串进行hash运算,得到hash值后再从服务器内存里的SQL缓存区中进行检索,如果有相同的SQL字符,并且确认是同一逻辑的SQL语句,则从共享池缓存中取出SQL对应的执行计划,根据执行计划读取数据并返回结果给客户端。

    如果在共享池中未发现相同的SQL则根据SQL逻辑生成一条新的执行计划并保存在SQL缓存区中,然后根据执行计划读取数据并返回结果给客户端。

    为了更快的检索SQL是否在缓存区中,首先进行的是SQL字符串hash值对比,如果未找到则认为没有缓存,如果存在再进行下一步的准确对比,所以要命中SQL缓存区应保证SQL字符是完全一致,中间有大小写或空格都会认为是不同的SQL。

    如果我们不采用绑定变量,采用字符串拼接的模式生成SQL,那么每条SQL都会产生执行计划,这样会导致共享池耗尽,缓存命中率也很低。

    一些不使用绑定变量的场景:

    a、数据仓库应用,这种应用一般并发不高,但是每个SQL执行时间很长,SQL解析的时间相比SQL执行时间比较小,绑定变量对性能提高不明显。数据仓库一般都是内部分析应用,所以也不太会发生SQL注入的安全问题。

    b、数据分布不均匀的特殊逻辑,如产品表,记录有1亿,有一产品状态字段,上面建有索引,有审核中,审核通过,审核未通过3种状态,其中审核通过9500万,审核中1万,审核不通过499万。

    要做这样一个查询:

    select count(*) from product where status=?

    采用绑定变量的话,那么只会有一个执行计划,如果走索引访问,那么对于审核中查询很快,对审核通过和审核不通过会很慢;如果不走索引,那么对于审核中与审核通过和审核不通过时间基本一样;

    对于这种情况应该不使用绑定变量,而直接采用字符拼接的方式生成SQL,这样可以为每个SQL生成不同的执行计划,如下所示。

    select count(*) from product where status='approved'; //不使用索引

    select count(*) from product where status='tbd'; //不使用索引

    select count(*) from product where status='auditing';//使用索引

    4.2、合理使用排序

    Oracle的排序算法一直在优化,但是总体时间复杂度约等于nLog(n)。普通OLTP系统排序操作一般都是在内存里进行的,对于数据库来说是一种CPU的消耗,曾在PC机做过测试,单核普通CPU在1秒钟可以完成100万条记录的全内存排序操作,所以说由于现在CPU的性能增强,对于普通的几十条或上百条记录排序对系统的影响也不会很大。但是当你的记录集增加到上万条以上时,你需要注意是否一定要这么做了,大记录集排序不仅增加了CPU开销,而且可能会由于内存不足发生硬盘排序的现象,当发生硬盘排序时性能会急剧下降,这种需求需要与DBA沟通再决定,取决于你的需求和数据,所以只有你自己最清楚,而不要被别人说排序很慢就吓倒。

    以下列出了可能会发生排序操作的SQL语法:

    Order by

    Group by

    Distinct

    Exists子查询

    Not Exists子查询

    In子查询

    Not In子查询

    Union(并集),Union All也是一种并集操作,但是不会发生排序,如果你确认两个数据集不需要执行去除重复数据操作,那请使用Union All 代替Union。

    Minus(差集)

    Intersect(交集)

    Create Index

    Merge Join,这是一种两个表连接的内部算法,执行时会把两个表先排序好再连接,应用于两个大表连接的操作。如果你的两个表连接的条件都是等值运算,那可以采用Hash Join来提高性能,因为Hash Join使用Hash 运算来代替排序的操作。具体原理及设置参考SQL执行计划优化专题。

    4.3、减少比较操作

    我们SQL的业务逻辑经常会包含一些比较操作,如a=b,a<b之类的操作,对于这些比较操作数据库都体现得很好,但是如果有以下操作,我们需要保持警惕:

    Like模糊查询,如下所示:

    a like ‘%abc%’

    Like模糊查询对于数据库来说不是很擅长,特别是你需要模糊检查的记录有上万条以上时,性能比较糟糕,这种情况一般可以采用专用Search或者采用全文索引方案来提高性能。

    不能使用索引定位的大量In List,如下所示:

    a in (:1,:2,:3,…,:n)   ----n>20

    如果这里的a字段不能通过索引比较,那数据库会将字段与in里面的每个值都进行比较运算,如果记录数有上万以上,会明显感觉到SQL的CPU开销加大,这个情况有两种解决方式:

    a、  将in列表里面的数据放入一张中间小表,采用两个表Hash Join关联的方式处理;

    b、  采用str2varList方法将字段串列表转换一个临时表处理,关于str2varList方法可以在网上直接查询,这里不详细介绍。

    以上两种解决方案都需要与中间表Hash Join的方式才能提高性能,如果采用了Nested Loop的连接方式性能会更差。

    如果发现我们的系统IO没问题但是CPU负载很高,就有可能是上面的原因,这种情况不太常见,如果遇到了最好能和DBA沟通并确认准确的原因。

    4.4、大量复杂运算在客户端处理

    什么是复杂运算,一般我认为是一秒钟CPU只能做10万次以内的运算。如含小数的对数及指数运算、三角函数、3DES及BASE64数据加密算法等等。

    如果有大量这类函数运算,尽量放在客户端处理,一般CPU每秒中也只能处理1万-10万次这样的函数运算,放在数据库内不利于高并发处理。

    5、利用更多的资源

    5.1、客户端多进程并行访问

    多进程并行访问是指在客户端创建多个进程(线程),每个进程建立一个与数据库的连接,然后同时向数据库提交访问请求。当数据库主机资源有空闲时,我们可以采用客户端多进程并行访问的方法来提高性能。如果数据库主机已经很忙时,采用多进程并行访问性能不会提高,反而可能会更慢。所以使用这种方式最好与DBA或系统管理员进行沟通后再决定是否采用。

    例如:

    我们有10000个产品ID,现在需要根据ID取出产品的详细信息,如果单线程访问,按每个IO要5ms计算,忽略主机CPU运算及网络传输时间,我们需要50s才能完成任务。如果采用5个并行访问,每个进程访问2000个ID,那么10s就有可能完成任务。

    那是不是并行数越多越好呢,开1000个并行是否只要50ms就搞定,答案肯定是否定的,当并行数超过服务器主机资源的上限时性能就不会再提高,如果再增加反而会增加主机的进程间调度成本和进程冲突机率。

    以下是一些如何设置并行数的基本建议:

    如果瓶颈在服务器主机,但是主机还有空闲资源,那么最大并行数取主机CPU核数和主机提供数据服务的磁盘数两个参数中的最小值,同时要保证主机有资源做其它任务。

    如果瓶颈在客户端处理,但是客户端还有空闲资源,那建议不要增加SQL的并行,而是用一个进程取回数据后在客户端起多个进程处理即可,进程数根据客户端CPU核数计算。

    如果瓶颈在客户端网络,那建议做数据压缩或者增加多个客户端,采用map reduce的架构处理。

    如果瓶颈在服务器网络,那需要增加服务器的网络带宽或者在服务端将数据压缩后再处理了。

    5.2、数据库并行处理

    数据库并行处理是指客户端一条SQL的请求,数据库内部自动分解成多个进程并行处理,如下图所示:

    并不是所有的SQL都可以使用并行处理,一般只有对表或索引进行全部访问时才可以使用并行。数据库表默认是不打开并行访问,所以需要指定SQL并行的提示,如下所示:

    select /*+parallel(a,4)*/ * from employee;

    并行的优点:

    使用多进程处理,充分利用数据库主机资源(CPU,IO),提高性能。

    并行的缺点:

    1、单个会话占用大量资源,影响其它会话,所以只适合在主机负载低时期使用;

    2、只能采用直接IO访问,不能利用缓存数据,所以执行前会触发将脏缓存数据写入磁盘操作。

    注:

    1、并行处理在OLTP类系统中慎用,使用不当会导致一个会话把主机资源全部占用,而正常事务得不到及时响应,所以一般只是用于数据仓库平台。

    2、一般对于百万级记录以下的小表采用并行访问性能并不能提高,反而可能会让性能更差。

    参考文章:http://www.cnblogs.com/easypass/archive/2010/12/08/1900127.html

          http://www.cnblogs.com/yunfeifei/p/3850440.html

    正因为当初对未来做了太多的憧憬,所以对现在的自己尤其失望。生命中曾经有过的所有灿烂,终究都需要用寂寞来偿还。
  • 相关阅读:
    我回来了
    wget 官方jdk
    linux rpm命令安装卸载 初步使用
    关于一些对location认识的误区(转)
    直接插入排序
    冒泡排序
    Wireshark下TCP三次握手四次挥手
    linux内存使用率详解
    Linux下硬盘使用率详解及shell脚本实现
    Linux下CPU使用率详解
  • 原文地址:https://www.cnblogs.com/candlia/p/11919982.html
Copyright © 2020-2023  润新知