http://poj.org/problem?id=3186
Treats for the Cows
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 4041 | Accepted: 2063 |
Description
FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.
The treats are interesting for many reasons:
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
The treats are interesting for many reasons:
- The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
- Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
- The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
- Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
Input
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains the value of treat v(i)
Lines 2..N+1: Line i+1 contains the value of treat v(i)
Output
Line 1: The maximum revenue FJ can achieve by selling the treats
Sample Input
5 1 3 1 5 2
Sample Output
43
Hint
Explanation of the sample:
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
题意:
给一个序列,只能从俩端出,出一个乘以天数。
分析:
本来想,一个序列,只能从俩端出,就只要比较俩端的大小就可以了,其实不然,看下面的测试数据:
4
101 1 102 100
按照我想的结果是713;
可是如果你首先找出102为第5天,接下来就是递推的过程了。
所以明显大很多811.
所以状态转移方程是 dp[i][j]=max(dp[i+1][j]+v[i]*(n-j+i),dp[i][j-1]+v[j]*(n-j+i));
n-j+i是天数,通过一个一个找出的规律。
n-j+i是天数,通过一个一个找出的规律。
#include<iostream> #include<cstring> #include<cstdio> using namespace std; int dp[2005][2005]; int main() { int n,i,g,k,v[2005],j; while(~scanf("%d",&n)) { memset(dp,0,sizeof(dp)); for(i=0;i<n;i++) { scanf("%d",&v[i]); dp[i][i]=v[i]*n;//初始化,从最后出对往前推,假设每个都是最后出对。 } for(k=1;k<=n;k++) { for(i=0;i<n-k;i++) { j=i+k; dp[i][j]=max(dp[i+1][j]+v[i]*(n-j+i),dp[i][j-1]+v[j]*(n-j+i)); //这里是从最后出队的开始往前推,因为只有最后出队的, //i+1才会等于j。 } } printf("%d ",dp[0][n-1]); } return 0; } /*#include<iostream> #include<cstdio> using namespace std; int main() { int i,t,a[2005],j,ans,n; while(~scanf("%d",&t)) { ans=0;n=1; for(i=0;i<t;i++) scanf("%d",&a[i]); i=0;j=t-1;n=1; while(n<=t) { if(a[i]<a[j]) { ans+=a[i]*n; printf("ans=%d ",ans); i++; } else { ans+=a[j]*n; printf("ans=%d ",ans); j--; } n++; } printf("%d ",ans); } return 0; }*/