• 2020-2021-1 20209316《Linux内核原理与分析》第三周作业


    《Linux内核原理与分析》第三周作业

    一、实验:完成一个简单的时间片轮转多道程序内核代码

    输入以下指令
    cd LinuxKernel/linux-3.9.4
    查看mymain.c和myinterrupt.c,根据GitHub和书上知识,将代码改一下

    原来代码

    mymain.c

    my interrupt.c

    现在代码

    mymain.c
    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    #include "mypcb.h"
    tPCB task[MAX_TASK_NUM];
    tPCB * my_current_task = NULL;
    volatile int my_need_sched = 0;
    void my_process(void);
    void __init my_start_kernel(void)
    {
        int pid = 0;
        int i;
        /* Initialize process 0*/
        task[pid].pid = pid;
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
        task[pid].next = &task[pid];
        /*fork more process */
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
    	    task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
            task[i].next = task[i-1].next;
            task[i-1].next = &task[i];
        }
        /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];
    	asm volatile(
        	"movl %1,%%rsp
    	" 	/* set task[pid].thread.sp to rsp */
        	"pushl %1
    	" 	        /* push rbp */
        	"pushl %0
    	" 	        /* push task[pid].thread.ip */
        	"ret
    	" 	            /* pop task[pid].thread.ip to rip */
        	: 
        	: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)	/* input c or d mean %ecx/%edx*/
    	);
    } 
    
    int i = 0;
    
    void my_process(void)
    {    
        while(1)
        {
            i++;
            if(i%10000000 == 0)
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
            	    my_schedule();
            	}
            	printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }
    
    myinterrupt.c
    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    #include "mypcb.h"
    
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    
    /*
     * Called by timer interrupt.
     * it runs in the name of current running process,
     * so it use kernel stack of current running process
     */
    void my_timer_handler(void)
    {
        if(time_count%1000 == 0 && my_need_sched != 1)
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        } 
        time_count ++ ;  
        return;  	
    }
    
    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
        if(my_current_task == NULL 
            || my_current_task->next == NULL)
        {
        	return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {        
        	my_current_task = next; 
        	printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);  
        	/* switch to next process */
        	asm volatile(	
            	"pushl %%rbp
    	" 	    /* save rbp of prev */
            	"movl %%rsp,%0
    	" 	/* save rsp of prev */
            	"movl %2,%%rsp
    	"     /* restore  rsp of next */
            	"movl $1f,%1
    	"       /* save rip of prev */	
            	"pushl %3
    	" 
            	"ret
    	" 	            /* restore  rip of next */
            	"1:	"                  /* next process start here */
            	"popl %%rbp
    	"
            	: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            	: "m" (next->thread.sp),"m" (next->thread.ip)
        	); 
        }  
        return;	
    }
    

    控制时间片轮转的pcb进程结构代码

    #define MAX_TASK_NUM        4
    #define KERNEL_STACK_SIZE   1024*2
    /* CPU-specific state of this task */
    struct Thread {
        unsigned long		ip;
        unsigned long		sp;
    };
    
    typedef struct PCB{
        int pid;
        volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
        unsigned long stack[KERNEL_STACK_SIZE];
        /* CPU-specific state of this task */
        struct Thread thread;
        unsigned long	task_entry;
        struct PCB *next;
    }tPCB;
    
    void my_schedule(void);
    



    make一下,编译完可以看出时间片轮转的特征

    二、学习知识

    • 计算机三个法宝(3个关键性的方法机制):存储程序计算机、函数调用堆栈、中断机制
    • 堆栈的作用是:记录函数调用框架、传递函数参数、保存返回值地址、提供函数内部局部变量的存储空间。
    • 堆栈相关的寄存器:
      • ESP:堆栈指针,指向堆栈栈顶
      • EBP:基址指针,指向堆栈栈底
    • 堆栈操作
      • push: 栈顶地址减少4个字节,将操作数放入栈顶存储单元
      • pop :将操作数从栈顶存储单元移出,栈顶地址增加4个字节
    • 其他关键寄存器
      • CS:EIP 总是指向下一条指令地址。CS是代码段寄存器, EIP是指向下一条指令的地址
      • 跳转/分支:执行这样的命令时,CS:EIP的值会根据程序需要被修改
      • call:将当前CS:EIP的值压入栈顶,CS:EIP指向被调用函数的入口地址
      • ret:从栈顶弹出原来保存在这里CS:EIP的值,放入CS:EIP中
    • c语言内嵌汇编语言
        asm volatile(
            "movl $0,%%eax
    	"
            /*  将eax寄存器清零  */
            "addl %1,%%eax
    	"
            /* %1 是指下面的输入输出部分,从0开始编号,所以%1指的是val1*/
            /* 这条语句的就是就是将ecx中存储的val1的值与eax寄存器中的值相加,结果为1*/
            "addl %2,%%eax
    	"
            /* %2 是指val2存在edx寄存器中*/
            /*这条语句就是将val2与寄存器eax中的值相加,放回eax中*/
            "movl %%eax,%0
    	"
            /* val1+val2的值写入到%0中去,也就是val3*/
    
            /*输出部分 */
            :"=m"(val3)
               /* =m”代表内存变量,m就是memory,也就是直接把变量写到内存val3中*/
    
             /*输入部分 */
            :"c"(vall),"d"(val2)
                /* c代表%二次项,d![](https://img2018.cnblogs.com/blog/1800798/201909/1800798-20190928193228032-1611440033.png)
    代表%edx,就是使用这一存储器存储相应变量的值*/
        );
    

    三、总结

    本次学习主要学习了计算机的三大法宝清楚它们各自的作用是什么。
    学习了C语言内嵌入汇编代码。
    对时间片轮转的实际代码得到了学习。

  • 相关阅读:
    看着四年前的代码,那时奋斗的模样,百感滋味
    操作系统中进程调度策略有哪几种?
    Linux操作系统及调用接口
    wpf 图像浏览(平移,缩放)
    C# double小数点的取舍
    C# 读写16位tif图片灰度数据
    WPF Slider滑块的使用
    WPF使用MVVMLight的ViewModel 访问控件的属性方法事件以及多页面传递信息
    苹果手机小米手环5收不到微信QQ消息提醒的解决办法
    AD覆铜设置规则
  • 原文地址:https://www.cnblogs.com/camusxd/p/13850064.html
Copyright © 2020-2023  润新知