• windows10安装tensorflow CPU版本


    1.先安装python3.6版本

      a.安装完成后在cmd中输入python,如果出现python命令行模式,则说明python安装成功。

    2.在cmd中输入pip3 install --upgrade tensorflow ,直至安装完成。

    3.在python命令行中输入import tensorflow,如果不出现任何提示,则说明安装成功;也可以使用下面代码进行测试。

      

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    import os
    import time
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
    
    start = time.time()
    
    mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
    
    # print mnist.train.images.shape,mnist.train.labels.shape
    # (55000, 784) (55000, 10)
    # 784 = 28*28
    # print mnist.test.images.shape,mnist.test.labels.shape
    # (10000, 784) (10000, 10)
    # print mnist.validation.images.shape,mnist.validation.labels.shape
    # (5000, 784) (5000, 10)
    
    def Weight_value(shape):
        init = tf.random_normal(shape, stddev=0.1)
        return tf.Variable(init, name="weight")
    def bias_value(shape):
        init = tf.constant(0.1, shape=shape)
        return tf.Variable(init)
    def conv2d(x, W):
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")
    def pool_2x2(x):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
    
    xs = tf.placeholder(tf.float32, [None, 784])
    ys = tf.placeholder(tf.float32, [None, 10])
    
    x_image = tf.reshape(xs, [-1, 28, 28, 1])
    
    # layer1 conv1  [-1, 28, 28, 32]
    W_conv1 = Weight_value([5, 5, 1, 32])
    b_conv1 = bias_value([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1)
    # layer2 pool1 [-1, 14, 14, 32]
    h_pool1 = pool_2x2(h_conv1)
    # layer3 conv2 [-1, 14, 14, 64]
    W_conv2 = Weight_value([5, 5, 32, 64])
    b_conv2 = bias_value([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2)+b_conv2)
    # layer4 pool2 [-1,7,7,64]
    h_pool2 = pool_2x2(h_conv2)
    # layer5 fc1 [-1,1024]
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    W_fc1 = Weight_value([7*7*64, 1024])
    b_fc1 = bias_value([1024])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1)
    #layer6 dropout
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    # layer7 fc2 [-1,10]
    W_fc2 = Weight_value([1024, 10])
    b_fc2 = bias_value([10])
    y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)
    
    # cross_entropy
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(y_conv), reduction_indices=[1]))
    # optimizer
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    # accuracy
    correct_prediction = tf.equal(tf.argmax(ys, 1), tf.argmax(y_conv, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    # init
    init = tf.global_variables_initializer()
    # sess
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    
    with tf.Session(config=config) as sess:
        sess.run(init)
        for i in range(1001):
            x_batch, y_batch = mnist.train.next_batch(50)
            sess.run(train_step, feed_dict={xs:x_batch, ys:y_batch, keep_prob:0.5})
            if i%100 == 0:
                x_test, y_test = mnist.test.next_batch(50)
                print(i, ' step train ', sess.run(accuracy, feed_dict={xs: x_batch, ys: y_batch, keep_prob: 1}))
                print(i, ' step test', sess.run(accuracy, feed_dict={xs:x_test, ys:y_test, keep_prob: 1}))
    
    end = time.time()
    print("function time is : ", end-start)
    

      如果出现运算,则说明安装成功。

  • 相关阅读:
    TextFlow with JavaFX 2
    搞IT的技术人员为什么会如此苦逼
    Spring MVC3.0.5搭建全程
    JetNuke笔记 ( by quqi99 )
    What is the difference between application server and web server?
    Customize Netbeans Platform Splash Screen and About Dialog
    caffe-win10-cifar10
    Ubuntu14.04+caffe+CPU
    win10+caffe+GPU
    Majority Element(169) && Majority Element II(229)
  • 原文地址:https://www.cnblogs.com/callyblog/p/7892783.html
Copyright © 2020-2023  润新知