• NOIP2005普及组第3题 采药 (背包问题)


    NOIP2005普及组第3题 采药   

    时间限制: 1 Sec  内存限制: 128 MB
    提交: 50  解决: 23
    [提交][状态][讨论版][命题人:外部导入]

    题目描述

    辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。” 

     

    如果你是辰辰,你能完成这个任务吗?

    输入

    第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。

    输出

    包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。

     

     

    【数据规模】

     

     

     

    对于30%的数据,M <= 10;

     

    对于全部的数据,M <= 100。

     

    样例输入

    70 3
    71 100
    69 1
    1 2

    样例输出

    3

    题目的要求是用有限的时间获取价值尽可能高的草药,所以可以用01背包来做。

    可以假设采药时的最优解是在时间T内i棵,用c(i,T)表示,此时这个解要么包含i这棵草药,要么不包含,假设采这颗草药的时间为T1,价值为V,如果包含,这个最优解变成了c(i-1,T-T1)+V,如果不包含,这个最优解变成了c(i-1,T),这时只要判断c(i-1,T-T1)+V和c(i-1,T)哪个价值更大,哪个就是最优解,即c(i,T)=max(c(i-1,T-T1)+V,c(i-1,T))。

    现在令第j个草药的价值为v[j],采这个草药的时间为ti[j]i时的价值为h[i],则有h[i]=max(h[i-1],h[i-ti[j]]+v[j])。而h[0]为0,我们就得到了最优解的递推公式。代码如下:

    #include <iostream>
    #include <cstring>
    #include <string>
    #include <algorithm>
    using namespace std;
    int dp[1005];
    int v[105],w[105];
    int main()
    {
        int t,n;
        int i;
        cin>>t>>n;
        for(i=1;i<=n;i++)
            cin>>w[i]>>v[i];
        memset(dp,0,sizeof(0));
        for(i=1;i<=n;i++)
        {
            for(int j=t;j>=w[i];j--)
            {
                dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
            }
        }
        cout<<dp[t];
        return 0;
    }
     
  • 相关阅读:
    linux:centos7开启指定端口,开放外网访问
    zookeeper 集群搭建
    单机安装zookeeper的3.4.7版本
    CentOS7下安装jdk1.8并配置环境变量,防火墙设置开关
    Redis分布式锁的正确实现方式
    MySQl5.7 忘记密码怎么办?
    Flink 之Window(窗口)
    Flink之Sink(文件、Kafka、Redis、Es、Mysql)
    Canal同步Mysql数据至Hbase
    Flink 之分流Select与Split
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/8577007.html
Copyright © 2020-2023  润新知