• Tensorflow暑期实践——基于单个神经元的手写数字识别


    版权说明:浙江财经大学专业实践深度学习tensorflow——齐峰

    基于单个神经元的手写数字识别

    目录

    本章内容介绍

    ** 本章将介绍如何使用Tensorflow建立神经网络,训练、评估模型并使用训练好的模型识别手写数字MNIST。 **



    ** 关于MNIST数据集的介绍 **

    详见:mnist_introduce.ipynb



    ** 由简入繁,首先,构建由单个神经元组成的神经网络,然后尝试将模型加宽和加深,以提高分类准确率。 **

    ** 参考范例程序: **

    • 单个神经元:mnist_single_neuron.ipynb
    • 单隐层神经网络:mnist_h256.ipynb
    • 多隐层神经网络:mnist_h256_h256.ipynb

    Tensorflow实现基于单个神经元的手写数字识别

    神经元函数及优化方法

    单个神经元的网络模型

    ** 网络模型 **

    图1. 单个神经元的网络模型

    计算公式如下:

    [{ m {output}}=f(z)=f(sum_{i=1}^n w_i imes x_i + b) ]

    其中,(z)为输出结果,(x_i)为输入,(w_i)为相应的权重,(b)为偏置,(f)为激活函数。

    ** 正向传播 **

    数据是从输入端流向输出端的,当赋予(w)(b)合适的值并结合合适的激活函数时,可产生很好的拟合效果。

    ** 反向传播 **

    • 反向传播的意义在于,告诉我们需要将w和b调整到多少。
    • 在刚开始没有得到合适的w和b时,正向传播所产生的结果与真实值之间存在误差,反向传播就是利用这个误差信号修正w和b的取值,从而获得一个与真实值更加接近的输出。
    • 在实际训练过程中,往往需要多次调整(w)(b),直至模型输出值与真实值小于某个阈值。

    激活函数

    运行时激活神经网络中部分神经元,将激活信息向后传入下一层神经网络。

    激活函数的主要作用是,加入非线性因素,以解决线性模型表达能力不足的问题。



    ** 常用激活函数 **

    • (1)** Sigmoid **,在Tensorflow中对应函数为:tf.nn.sigmoid(x, name=None)
    • (2)** Tanh **,在Tensorflow中对应函数为:tf.nn.tanh(x, name=None)
    • (3)** Relu **,在Tensorflow中对应函数为:tf.nn.relu(x, name=None)

    载入数据

    import tensorflow as tf 
    import os 
    os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
    print(tf.__version__)
    print(tf.test.is_gpu_available())
    
    1.12.0
    False
    
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    
    WARNING:tensorflow:From <ipython-input-2-8bf8ae5a5303>:2: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
    WARNING:tensorflow:From E:ProgramDataAnaconda3libsite-packages	ensorflowcontriblearnpythonlearndatasetsmnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please write your own downloading logic.
    WARNING:tensorflow:From E:ProgramDataAnaconda3libsite-packages	ensorflowcontriblearnpythonlearndatasetsmnist.py:262: extract_images (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use tf.data to implement this functionality.
    Extracting MNIST_data/train-images-idx3-ubyte.gz
    WARNING:tensorflow:From E:ProgramDataAnaconda3libsite-packages	ensorflowcontriblearnpythonlearndatasetsmnist.py:267: extract_labels (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use tf.data to implement this functionality.
    Extracting MNIST_data/train-labels-idx1-ubyte.gz
    WARNING:tensorflow:From E:ProgramDataAnaconda3libsite-packages	ensorflowcontriblearnpythonlearndatasetsmnist.py:110: dense_to_one_hot (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use tf.one_hot on tensors.
    Extracting MNIST_data/t10k-images-idx3-ubyte.gz
    Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
    WARNING:tensorflow:From E:ProgramDataAnaconda3libsite-packages	ensorflowcontriblearnpythonlearndatasetsmnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
    

    构建模型

    ** 定义(x)(y)的占位符 **

    tf.reset_default_graph() #清除default graph和不断增加的节点
    
    x = tf.placeholder(tf.float32, [None, 784]) # mnist 中每张图片共有28*28=784个像素点
    y = tf.placeholder(tf.float32, [None, 10]) # 0-9 一共10个数字=> 10 个类别
    

    ** 创建变量 **

    在神经网络中,权值(W)的初始值通常设为正态分布的随机数,偏置项(b)的初始值通常也设为正态分布的随机数或常数。在Tensorflow中,通常利用以下函数实现正态分布随机数的生成:

    ** tf.random_normal **

    norm = tf.random_normal([100]) #生成100个随机数
    with tf.Session() as sess:
        norm_data=norm.eval()
    print(norm_data[:10])                  #打印前10个随机数
    
    [-0.8566289   1.2637379  -0.37130925  0.76486456  0.3292667   0.22041267
      0.2905729   0.04571301 -0.43698135 -0.11702691]
    
    import matplotlib.pyplot as plt
    plt.hist(norm_data)
    plt.show()
    
    <Figure size 640x480 with 1 Axes>
    

    在本案例中,以正态分布的随机数初始化权重(W),以常数0初始化偏置(b)

    W = tf.Variable(tf.random_normal([784, 10]))
    b = tf.Variable(tf.zeros([10])) 
    

    ** 用单个神经元构建神经网络 **

    forward=tf.matmul(x, W) + b # 前向输出
    tf.summary.histogram('forward',forward)#将前向输出值以直方图显示
    
    <tf.Tensor 'forward:0' shape=() dtype=string>
    

    示例中在执行训练后在tensorboard界面可查看到如下关于forward的直方图:

    <img src="forward_hist_single.jpg"width=400 height=400 />

    ** 关于Softmax Regression **

    当我们处理多分类任务时,通常需要使用Softmax Regression模型。

    Softmax Regression会对每一类别估算出一个概率。

    ** 工作原理: **将判定为某一类的特征相加,然后将这些特征转化为判定是这一类的概率。

    pred = tf.nn.softmax(forward) # Softmax分类
    

    训练模型

    ** 设置训练参数 **

    train_epochs = 30
    batch_size = 100
    total_batch= int(mnist.train.num_examples/batch_size)
    display_step = 1
    learning_rate=0.01
    
    

    ** 定义损失函数 **

    loss_function = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1)) # 交叉熵
    tf.summary.scalar('loss', loss_function)#将损失以标量显示
    
    
    <tf.Tensor 'loss:0' shape=() dtype=string>
    

    ** 选择优化器 **

    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function) #梯度下降
    

    ** 定义准确率 **

    # 检查预测类别tf.argmax(pred, 1)与实际类别tf.argmax(y, 1)的匹配情况
    correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    # 准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 将布尔值转化为浮点数,并计算平均值
    
    tf.summary.scalar('accuracy', accuracy)#将准确率以标量显示
    
    <tf.Tensor 'accuracy:0' shape=() dtype=string>
    
    sess = tf.Session() #声明会话
    init = tf.global_variables_initializer() # 变量初始化
    sess.run(init)
    
    merged_summary_op = tf.summary.merge_all()#合并所有summary
    writer = tf.summary.FileWriter('log/mnist_single_neuron', sess.graph) #创建写入符
    
    
    # 开始训练
    for epoch in range(train_epochs ):
        for batch in range(total_batch):
            xs, ys = mnist.train.next_batch(batch_size)# 读取批次数据
            sess.run(optimizer,feed_dict={x: xs,y: ys}) # 执行批次训练
            
            #生成summary
            summary_str = sess.run(merged_summary_op,feed_dict={x: xs,y: ys})
            writer.add_summary(summary_str, epoch)#将summary 写入文件
            #total_batch个批次训练完成后,使用验证数据计算误差与准确率   
        loss,acc = sess.run([loss_function,accuracy],
                            feed_dict={x: mnist.validation.images, y: mnist.validation.labels})
        # 打印训练过程中的详细信息
        if (epoch+1) % display_step == 0:
            print("Train Epoch:", '%02d' % (epoch+1), "Loss=", "{:.9f}".format(loss)," Accuracy=","{:.4f}".format(acc))
    
    print("Train Finished!")  
    
    Train Epoch: 01 Loss= 5.594824791  Accuracy= 0.2620
    Train Epoch: 02 Loss= 3.323985577  Accuracy= 0.4562
    Train Epoch: 03 Loss= 2.485962391  Accuracy= 0.5586
    Train Epoch: 04 Loss= 2.052196503  Accuracy= 0.6244
    Train Epoch: 05 Loss= 1.785376191  Accuracy= 0.6610
    Train Epoch: 06 Loss= 1.601655483  Accuracy= 0.6886
    Train Epoch: 07 Loss= 1.467257380  Accuracy= 0.7118
    Train Epoch: 08 Loss= 1.363661408  Accuracy= 0.7296
    Train Epoch: 09 Loss= 1.280923843  Accuracy= 0.7432
    Train Epoch: 10 Loss= 1.212942958  Accuracy= 0.7546
    Train Epoch: 11 Loss= 1.156675100  Accuracy= 0.7652
    Train Epoch: 12 Loss= 1.108838320  Accuracy= 0.7742
    Train Epoch: 13 Loss= 1.067099810  Accuracy= 0.7810
    Train Epoch: 14 Loss= 1.031150222  Accuracy= 0.7884
    Train Epoch: 15 Loss= 0.999342263  Accuracy= 0.7938
    Train Epoch: 16 Loss= 0.971206069  Accuracy= 0.7996
    Train Epoch: 17 Loss= 0.945592284  Accuracy= 0.8046
    Train Epoch: 18 Loss= 0.923156917  Accuracy= 0.8094
    Train Epoch: 19 Loss= 0.901953936  Accuracy= 0.8142
    Train Epoch: 20 Loss= 0.882337689  Accuracy= 0.8188
    Train Epoch: 21 Loss= 0.864885747  Accuracy= 0.8220
    Train Epoch: 22 Loss= 0.848752856  Accuracy= 0.8242
    Train Epoch: 23 Loss= 0.833763659  Accuracy= 0.8264
    Train Epoch: 24 Loss= 0.820160329  Accuracy= 0.8276
    Train Epoch: 25 Loss= 0.806553364  Accuracy= 0.8286
    Train Epoch: 26 Loss= 0.794732749  Accuracy= 0.8310
    Train Epoch: 27 Loss= 0.783382237  Accuracy= 0.8350
    Train Epoch: 28 Loss= 0.772144020  Accuracy= 0.8370
    Train Epoch: 29 Loss= 0.762202621  Accuracy= 0.8372
    Train Epoch: 30 Loss= 0.752200246  Accuracy= 0.8388
    Train Finished!
    

    从上述打印结果可以看出损失值** Loss 是趋于更小的,同时,准确率 Accuracy **越来越高。

    此外,我们还可以通过Tensorboard查看loss和accuracy的执行过程。



    通过tensorboard --logdir=log/mnist_single_neuron进入可视化界面,在scalar版面中可以查看loss和accuracy,如下图所示:

    评估模型

    ** 完成训练后,在测试集上评估模型的准确率 **

    print("Test Accuracy:", sess.run(accuracy,
                               feed_dict={x: mnist.test.images, y: mnist.test.labels}))
    
    Test Accuracy: 0.8358
    

    进行预测

    ** 在建立模型并进行训练后,若认为准确率可以接受,则可以使用此模型进行预测。 **

    prediction_result=sess.run(tf.argmax(pred,1), # 由于pred预测结果是one-hot编码格式,所以需要转换为0~9数字
                               feed_dict={x: mnist.test.images })
    

    ** 查看预测结果 **

    prediction_result[0:10] #查看预测结果中的前10项
    
    array([7, 6, 1, 0, 4, 1, 4, 9, 6, 9], dtype=int64)
    

    ** 定义可视化函数 **

    import matplotlib.pyplot as plt
    import numpy as np
    def plot_images_labels_prediction(images,labels,
                                      prediction,idx,num=10):
        fig = plt.gcf()
        fig.set_size_inches(10, 12)
        if num>25: num=25 
        for i in range(0, num):
            ax=plt.subplot(5,5, 1+i)
            
            ax.imshow(np.reshape(images[idx],(28, 28)), 
                      cmap='binary')
                
            title= "label=" +str(np.argmax(labels[idx]))
            if len(prediction)>0:
                title+=",predict="+str(prediction[idx]) 
                
            ax.set_title(title,fontsize=10) 
            ax.set_xticks([]);ax.set_yticks([])        
            idx+=1 
        plt.show()
    
    plot_images_labels_prediction(mnist.test.images,
                                  mnist.test.labels,
                                  prediction_result,0)
    

    从上面结果可知,通过30次迭代所训练的由** 单个神经元 构成的神经网络模型,在测试集上能够取得百分之八十以上的准确率。接下来,我们将尝试 加宽 加深 **模型,看看能否得到更高的准确率。

    # 预测结果
    plot_images_labels_prediction(mnist.test.images,
                                 mnist.test.labels,
                                 prediction_result,10,25)
    

  • 相关阅读:
    基于IFC的建筑工地模拟
    IfcProcedureTypeEnum
    IfcSimplePropertyTemplate
    IfcRelDefinesByObject
    ubuntu 安装 Protobuf3 日志
    IfcDistributionElement
    IfcTypeResource
    Github上很酷的项目汇总
    Simulink模块库分类
    利用Simulink设计一个简单的模型
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/13273109.html
Copyright © 2020-2023  润新知