• 分类预测输出precision,recall,accuracy,auc和tp,tn,fp,fn矩阵


    此次我做的实验是二分类问题,输出precision,recall,accuracy,auc

    # -*- coding: utf-8 -*-
    #from sklearn.neighbors import 
    import numpy as np
    from pandas import read_csv
    import pandas as pd
    import sys  
    import importlib
    from sklearn.neighbors import KNeighborsClassifier     
    from sklearn.ensemble import GradientBoostingClassifier    
    from sklearn import svm
    from sklearn import cross_validation
    from sklearn.metrics import hamming_loss
    from sklearn import metrics    
    importlib.reload(sys)
    from sklearn.linear_model import LogisticRegression 
    from imblearn.combine import SMOTEENN
    from sklearn.tree import DecisionTreeClassifier 
    from sklearn.ensemble import RandomForestClassifier  #92%
    from sklearn import tree
    from xgboost.sklearn import XGBClassifier
    from sklearn.linear_model import SGDClassifier
    from sklearn import neighbors
    from sklearn.naive_bayes import BernoulliNB
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    from sklearn.metrics import confusion_matrix
    from numpy import mat
    
    def metrics_result(actual, predict):  
        print('准确度:{0:.3f}'.format(metrics.accuracy_score(actual, predict))) 
        print('精密度:{0:.3f}'.format(metrics.precision_score(actual, predict,average='weighted'))) 
        print('召回:{0:0.3f}'.format(metrics.recall_score(actual, predict,average='weighted')))
        print('f1-score:{0:.3f}'.format(metrics.f1_score(actual, predict,average='weighted')))
        print('auc:{0:.3f}'.format(metrics.roc_auc_score(test_y, predict)))

    输出混淆矩阵

        matr=confusion_matrix(test_y,predict)
        matr=mat(matr)
        conf=np.matrix([[0,0],[0,0]])
        conf[0,0]=matr[1,1]
        conf[1,0]=matr[1,0]
        conf[0,1]=matr[0,1]
        conf[1,1]=matr[0,0]
        print(conf)

    全代码:

    # -*- coding: utf-8 -*-
    #from sklearn.neighbors import 
    import numpy as np
    from pandas import read_csv
    import pandas as pd
    import sys  
    import importlib
    from sklearn.neighbors import KNeighborsClassifier     
    from sklearn.ensemble import GradientBoostingClassifier    
    from sklearn import svm
    from sklearn import cross_validation
    from sklearn.metrics import hamming_loss
    from sklearn import metrics    
    importlib.reload(sys)
    from sklearn.linear_model import LogisticRegression 
    from imblearn.combine import SMOTEENN
    from sklearn.tree import DecisionTreeClassifier 
    from sklearn.ensemble import RandomForestClassifier  #92%
    from sklearn import tree
    from xgboost.sklearn import XGBClassifier
    from sklearn.linear_model import SGDClassifier
    from sklearn import neighbors
    from sklearn.naive_bayes import BernoulliNB
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    from sklearn.metrics import confusion_matrix
    from numpy import mat
    
    def metrics_result(actual, predict):  
        print('准确度:{0:.3f}'.format(metrics.accuracy_score(actual, predict))) 
        print('精密度:{0:.3f}'.format(metrics.precision_score(actual, predict,average='weighted'))) 
        print('召回:{0:0.3f}'.format(metrics.recall_score(actual, predict,average='weighted')))
        print('f1-score:{0:.3f}'.format(metrics.f1_score(actual, predict,average='weighted')))
        print('auc:{0:.3f}'.format(metrics.roc_auc_score(test_y, predict)))
    
    
    
    
    '''分类0-1'''
    root1="D:/ProgramData/station3/10.csv"
    root2="D:/ProgramData/station3/more+average2.csv"
    root3="D:/ProgramData/station3/new_10.csv"
    root4="D:/ProgramData/station3/more+remove.csv"
    root5="D:/ProgramData/station3/new_10 2.csv"
    root6="D:/ProgramData/station3/new10.csv"
    root7="D:/ProgramData/station3/no_-999.csv"
    
    root=root4
    data1 = read_csv(root) #数据转化为数组
    data1=data1.values
    print(root)
    time=1
             
    accuracy=[]
    aucc=[]
    pre=[]
    recall=[]
    for i in range(time):
        train, test= cross_validation.train_test_split(data1, test_size=0.2, random_state=i)
        test_x=test[:,:-1]  
        test_y=test[:,-1]
        train_x=train[:,:-1]
        train_y=train[:,-1]
    # =============================================================================
    #     print(train_x.shape)
    #     print(train_y.shape)
    #     print(test_x.shape)
    #     print(test_y.shape)
    #     print(type(train_x))
    # =============================================================================
        
        #X_Train=train_x
        #Y_Train=train_y
        
        X_Train, Y_Train = SMOTEENN().fit_sample(train_x, train_y)
      
        #clf = RandomForestClassifier()  #82 
        #clf = LogisticRegression()  #82 
        
        #penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’, verbose=0, warm_start=False, n_jobs=1
        #clf=svm.SVC()
        clf= XGBClassifier()
        #from sklearn.ensemble import RandomForestClassifier  #92%
        #clf = DecisionTreeClassifier() 
        #clf = GradientBoostingClassifier()
        
        #clf=neighbors.KNeighborsClassifier()  
        #clf=BernoulliNB()
        print(clf)
        clf.fit(X_Train, Y_Train) 
        predict=clf.predict(test_x)
        
        matr=confusion_matrix(test_y,predict)
        matr=mat(matr)
        conf=np.matrix([[0,0],[0,0]])
        conf[0,0]=matr[1,1]
        conf[1,0]=matr[1,0]
        conf[0,1]=matr[0,1]
        conf[1,1]=matr[0,0]
        print(conf)
        #a=metrics_result(test_y, predict)
        
        #a=metrics_result(test_y,predict)
        '''accuracy'''
        aa=metrics.accuracy_score(test_y, predict)
        
        #print(metrics.accuracy_score(test_y, predict))
        accuracy.append(aa)
        
        '''auc'''
        bb=metrics.roc_auc_score(test_y, predict, average=None)
        aucc.append(bb)
        
        '''precision'''
        cc=metrics.precision_score(test_y, predict, average=None)
        pre.append(cc[1])
        
    # =============================================================================
    #     print('cc') 
    #     print(type(cc))
    #     print(cc[1])
    #     print('cc')
    # =============================================================================
        
        '''recall'''
        dd=metrics.recall_score(test_y, predict, average=None)
        #print(metrics.recall_score(test_y, predict,average='weighted'))
        recall.append(dd[1])
        
        f=open('D:ProgramDatastation3predict.txt', 'w')
        for i in range(len(predict)):
            f.write(str(predict[i]))
            f.write('
    ')
        f.write("写好了")
        f.close()
        
        f=open('D:ProgramDatastation3y_.txt', 'w')
        for i in range(len(predict)):
            f.write(str(test_y[i]))
            f.write('
    ')
        f.write("写好了")
        f.close()
        
    # =============================================================================
    #     f=open('D:/ProgramData/station3/predict.txt', 'w')
    #     for i in range(len(predict)):
    #        f.write(str(predict[i]))
    #        f.write('
    ')
    #     f.write("写好了")
    #     f.close()
    #     
    #     f=open('D:/ProgramData/station3/y.txt', 'w')
    #     for i in range(len(test_y)):
    #        f.write(str(test_y[i]))
    #        f.write('
    ')
    #     f.write("写好了")
    #     f.close()
    #     
    # =============================================================================
    # =============================================================================
    #     print('调用函数auc:', metrics.roc_auc_score(test_y, predict, average='micro'))
    #     
    #     fpr, tpr, thresholds = metrics.roc_curve(test_y.ravel(),predict.ravel())
    #     auc = metrics.auc(fpr, tpr)
    #     print('手动计算auc:', auc)
    #     #绘图
    #     mpl.rcParams['font.sans-serif'] = u'SimHei'
    #     mpl.rcParams['axes.unicode_minus'] = False
    #     #FPR就是横坐标,TPR就是纵坐标
    #     plt.plot(fpr, tpr, c = 'r', lw = 2, alpha = 0.7, label = u'AUC=%.3f' % auc)
    #     plt.plot((0, 1), (0, 1), c = '#808080', lw = 1, ls = '--', alpha = 0.7)
    #     plt.xlim((-0.01, 1.02))
    #     plt.ylim((-0.01, 1.02))
    #     plt.xticks(np.arange(0, 1.1, 0.1))
    #     plt.yticks(np.arange(0, 1.1, 0.1))
    #     plt.xlabel('False Positive Rate', fontsize=13)
    #     plt.ylabel('True Positive Rate', fontsize=13)
    #     plt.grid(b=True, ls=':')
    #     plt.legend(loc='lower right', fancybox=True, framealpha=0.8, fontsize=12)
    #     plt.title(u'大类问题一分类后的ROC和AUC', fontsize=17)
    #     plt.show()
    # =============================================================================
        
        
    sum_acc=0
    sum_auc=0
    sum_pre=0
    sum_recall=0
    for i in range(time):
        sum_acc+=accuracy[i]
        sum_auc+=aucc[i]
        sum_pre+=pre[i]
        sum_recall+=recall[i]
        
    acc1=sum_acc*1.0/time
    auc1=sum_auc*1.0/time
    pre1=sum_pre*1.0/time
    recall1=sum_recall*1.0/time
    print("acc",acc1)
    print("auc",auc1)
    print("pre",pre1)
    print("recall",recall1)
    
    # =============================================================================
    # 
    # data1 = read_csv(root2) #数据转化为数组
    # data1=data1.values
    # 
    #            
    # accuracy=[]
    # auc=[]
    # pre=[]
    # recall=[]
    # for i in range(30):
    #     train, test= cross_validation.train_test_split(data1, test_size=0.2, random_state=i)
    #     test_x=test[:,:-1]  
    #     test_y=test[:,-1]
    #     train_x=train[:,:-1]
    #     train_y=train[:,-1]
    #     X_Train, Y_Train = SMOTEENN().fit_sample(train_x, train_y)
    #   
    #     #clf = RandomForestClassifier()  #82 
    #     clf = LogisticRegression()  #82 
    #     #clf=svm.SVC()
    #     #clf= XGBClassifier()
    #     #from sklearn.ensemble import RandomForestClassifier  #92%
    #     #clf = DecisionTreeClassifier() 
    #     #clf = GradientBoostingClassifier()
    #     
    #     #clf=neighbors.KNeighborsClassifier()  65.25%
    #     #clf=BernoulliNB()
    #     clf.fit(X_Train, Y_Train) 
    #     predict=clf.predict(test_x)
    #     
    #     '''accuracy'''
    #     aa=metrics.accuracy_score(test_y, predict)
    #     accuracy.append(aa)
    #     
    #     '''auc'''
    #     aa=metrics.roc_auc_score(test_y, predict)
    #     auc.append(aa)
    #     
    #     '''precision'''
    #     aa=metrics.precision_score(test_y, predict,average='weighted')
    #     pre.append(aa)
    #     
    #     '''recall'''
    #     aa=metrics.recall_score(test_y, predict,average='weighted')
    #     recall.append(aa)
    #     
    #     
    # sum_acc=0
    # sum_auc=0
    # sum_pre=0
    # sum_recall=0
    # for i in range(30):
    #     sum_acc+=accuracy[i]
    #     sum_auc+=auc[i]
    #     sum_pre+=pre[i]
    #     sum_recall+=recall[i]
    #     
    # acc1=sum_acc*1.0/30
    # auc1=sum_auc*1.0/30
    # pre1=sum_pre*1.0/30
    # recall1=sum_recall*1.0/30
    # print("more 的 acc:", acc1)
    # print("more 的 auc:", auc1)
    # print("more 的 precision:", pre1)
    # print("more 的 recall:", recall1)
    # 
    # =============================================================================
        #X_train, X_test, y_train, y_test = cross_validation.train_test_split(X_Train,Y_Train, test_size=0.2, random_state=i)
      

    输出结果:

     

  • 相关阅读:
    c# 日期函数DateTime.ToString()日期的各种格式 (本人亲测)
    C# Excel导入、导出【源码下载】
    微信支付服务器CA证书更换服务器安装der证书的方法 DigiCert的根证书
    重置winsock目录解决不能上网的问题
    模型验证组件 FluentValidation
    对于“Newtonsoft.Json”已拥有为“NETStander.Library”定义的依赖项,解决办法
    .NET平台开源项目速览(6)FluentValidation验证组件介绍与入门(一)
    C# 中参数验证方式的演变
    一步一步ITextSharp 低级操作函数使用
    Winform 打印PDF顺序混乱,获取打印队列
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/13270910.html
Copyright © 2020-2023  润新知