• GWO(灰狼优化)算法MATLAB源码逐行中文注解()


    以优化SVM算法的参数c和g为例,对GWO算法MATLAB源码进行了逐行中文注解。 

    tic % 计时器
    %% 清空环境变量
    close all
    clear
    clc
    format compact
    %% 数据提取
    % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量
    load wine.mat
    % 选定训练集和测试集
    % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集
    train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)];
    % 相应的训练集的标签也要分离出来
    train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)];
    % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集
    test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)];
    % 相应的测试集的标签也要分离出来
    test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)];
    %% 数据预处理
    % 数据预处理,将训练集和测试集归一化到[0,1]区间
    [mtrain,ntrain] = size(train_wine);
    [mtest,ntest] = size(test_wine);
    
    dataset = [train_wine;test_wine];
    % mapminmax为MATLAB自带的归一化函数
    [dataset_scale,ps] = mapminmax(dataset',0,1);
    dataset_scale = dataset_scale';
    
    train_wine = dataset_scale(1:mtrain,:);
    test_wine = dataset_scale( (mtrain+1):(mtrain+mtest),: );
    %% 利用灰狼算法选择最佳的SVM参数c和g
    SearchAgents_no=10; % 狼群数量,Number of search agents
    Max_iteration=10; % 最大迭代次数,Maximum numbef of iterations
    dim=2; % 此例需要优化两个参数c和g,number of your variables
    lb=[0.01,0.01]; % 参数取值下界
    ub=[100,100]; % 参数取值上界
    % v = 5; % SVM Cross Validation参数,默认为5
    
    % initialize alpha, beta, and delta_pos
    Alpha_pos=zeros(1,dim); % 初始化Alpha狼的位置
    Alpha_score=inf; % 初始化Alpha狼的目标函数值,change this to -inf for maximization problems
    
    Beta_pos=zeros(1,dim); % 初始化Beta狼的位置
    Beta_score=inf; % 初始化Beta狼的目标函数值,change this to -inf for maximization problems
    
    Delta_pos=zeros(1,dim); % 初始化Delta狼的位置
    Delta_score=inf; % 初始化Delta狼的目标函数值,change this to -inf for maximization problems
    
    %Initialize the positions of search agents
    Positions=initialization(SearchAgents_no,dim,ub,lb);
    
    Convergence_curve=zeros(1,Max_iteration);
    
    l=0; % Loop counter循环计数器
    
    % Main loop主循环
    while l<Max_iteration  % 对迭代次数循环
        for i=1:size(Positions,1)  % 遍历每个狼
    
           % Return back the search agents that go beyond the boundaries of the search space
           % 若搜索位置超过了搜索空间,需要重新回到搜索空间
            Flag4ub=Positions(i,:)>ub;
            Flag4lb=Positions(i,:)<lb;
            % 若狼的位置在最大值和最小值之间,则位置不需要调整,若超出最大值,最回到最大值边界;
            % 若超出最小值,最回答最小值边界
            Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; % ~表示取反           
    
          % 计算适应度函数值
           cmd = [' -c ',num2str(Positions(i,1)),' -g ',num2str(Positions(i,2))];
           model=svmtrain(train_wine_labels,train_wine,cmd); % SVM模型训练
           [~,fitness]=svmpredict(test_wine_labels,test_wine,model); % SVM模型预测及其精度
           fitness=100-fitness(1); % 以错误率最小化为目标
    
            % Update Alpha, Beta, and Delta
            if fitness<Alpha_score % 如果目标函数值小于Alpha狼的目标函数值
                Alpha_score=fitness; % 则将Alpha狼的目标函数值更新为最优目标函数值,Update alpha
                Alpha_pos=Positions(i,:); % 同时将Alpha狼的位置更新为最优位置
            end
    
            if fitness>Alpha_score && fitness<Beta_score % 如果目标函数值介于于Alpha狼和Beta狼的目标函数值之间
                Beta_score=fitness; % 则将Beta狼的目标函数值更新为最优目标函数值,Update beta
                Beta_pos=Positions(i,:); % 同时更新Beta狼的位置
            end
    
            if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score  % 如果目标函数值介于于Beta狼和Delta狼的目标函数值之间
                Delta_score=fitness; % 则将Delta狼的目标函数值更新为最优目标函数值,Update delta
                Delta_pos=Positions(i,:); % 同时更新Delta狼的位置
            end
        end
    
        a=2-l*((2)/Max_iteration); % 对每一次迭代,计算相应的a值,a decreases linearly fron 2 to 0
    
        % Update the Position of search agents including omegas
        for i=1:size(Positions,1) % 遍历每个狼
            for j=1:size(Positions,2) % 遍历每个维度
    
                % 包围猎物,位置更新
    
                r1=rand(); % r1 is a random number in [0,1]
                r2=rand(); % r2 is a random number in [0,1]
    
                A1=2*a*r1-a; % 计算系数A,Equation (3.3)
                C1=2*r2; % 计算系数C,Equation (3.4)
    
                % Alpha狼位置更新
                D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
                X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1
    
                r1=rand();
                r2=rand();
    
                A2=2*a*r1-a; % 计算系数A,Equation (3.3)
                C2=2*r2; % 计算系数C,Equation (3.4)
    
                % Beta狼位置更新
                D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
                X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       
    
                r1=rand();
                r2=rand(); 
    
                A3=2*a*r1-a; % 计算系数A,Equation (3.3)
                C3=2*r2; % 计算系数C,Equation (3.4)
    
                % Delta狼位置更新
                D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
                X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             
    
                % 位置更新
                Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)
    
            end
        end
        l=l+1;    
        Convergence_curve(l)=Alpha_score;
    end
    bestc=Alpha_pos(1,1);
    bestg=Alpha_pos(1,2);
    bestGWOaccuarcy=Alpha_score;
    %% 打印参数选择结果
    disp('打印选择结果');
    str=sprintf('Best Cross Validation Accuracy = %g%%,Best c = %g,Best g = %g',bestGWOaccuarcy*100,bestc,bestg);
    disp(str)
    %% 利用最佳的参数进行SVM网络训练
    cmd_gwosvm = ['-c ',num2str(bestc),' -g ',num2str(bestg)];
    model_gwosvm = svmtrain(train_wine_labels,train_wine,cmd_gwosvm);
    %% SVM网络预测
    [predict_label,accuracy] = svmpredict(test_wine_labels,test_wine,model_gwosvm);
    % 打印测试集分类准确率
    total = length(test_wine_labels);
    right = sum(predict_label == test_wine_labels);
    disp('打印测试集分类准确率');
    str = sprintf( 'Accuracy = %g%% (%d/%d)',accuracy(1),right,total);
    disp(str);
    %% 结果分析
    % 测试集的实际分类和预测分类图
    figure;
    hold on;
    plot(test_wine_labels,'o');
    plot(predict_label,'r*');
    xlabel('测试集样本','FontSize',12);
    ylabel('类别标签','FontSize',12);
    legend('实际测试集分类','预测测试集分类');
    title('测试集的实际分类和预测分类图','FontSize',12);
    grid on
    snapnow
    %% 显示程序运行时间
    toc
    % This function initialize the first population of search agents
    function Positions=initialization(SearchAgents_no,dim,ub,lb)
    
    Boundary_no= size(ub,2); % numnber of boundaries
    
    % If the boundaries of all variables are equal and user enter a signle
    % number for both ub and lb
    if Boundary_no==1
        Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;
    end
    
    % If each variable has a different lb and ub
    if Boundary_no>1
        for i=1:dim
            ub_i=ub(i);
            lb_i=lb(i);
            Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;
        end
    end

    ---------------------
    作者:Genlovy_Hoo
    来源:CSDN
    原文:https://blog.csdn.net/u013337691/article/details/52468552
    版权声明:本文为博主原创文章,转载请附上博文链接!

  • 相关阅读:
    C语言寒假大作战01
    C语言I作业12—学期总结
    C语言I博客作业11
    C语言I博客作业10
    C语言I博客作业09
    C语言I博客作业08
    计算机组成与设计 复习
    概率论与数理统计 期末复习
    SPM(Software Project Management)课程感想
    Software Project Management_JUnit && Maven
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/13270745.html
Copyright © 2020-2023  润新知