• Tensorflow暑期实践——单变量线性回归


    版权说明:浙江财经大学专业实践深度学习tensorflow——齐峰

    单变量线性回归

    目录

    使用Tensorflow进行算法设计与训练的核心步骤

    • ** (1)生成数据 **
    • ** (2)构建模型 **
    • ** (3)训练模型 **
    • ** (4)进行预测 **

    上述步骤是我们使用Tensorflow进行算法设计与训练的核心步骤,贯穿于后面介绍的具体实战中。
    本章用一个简单的例子来讲解这几个步骤。

    有监督机器学习过程示意图

    Tensorflow实现单变量线性回归

    假设我们要学习的函数为线性函数$ y=2x+1 $

    生成数据

    #在Jupyter中,使用matplotlib显示图像需要设置为 inline 模式,否则不会显示图像
    %matplotlib inline
    
    import matplotlib.pyplot as plt # 载入matplotlib
    import numpy as np # 载入numpy
    import tensorflow as tf # 载入Tensorflow
    import os
    
    os.environ['TF_CPP_MIN_LOG_LEVEAL'] = '2'
    
    np.random.seed(5)
    

    ** 首先,生成输入数据。 **
    我们需要构造满足这个函数的(x)(y)同时加入一些不满足方程的噪声.

    x_data = np.linspace(-1, 1, 100) #直接采用np生成等差数列的方法,生成100个点,每个点的取值在-1~1之间
    y_data = 2 * x_data + 1.0 + np.random.randn(*x_data.shape) * 0.4  # y = 2x +1 + 噪声, 其中,噪声的维度与x_data一致
    

    Jupyter使用小技巧

    可以使用Tab健进行代码补齐

    ** 利用matplotlib画图 **

    plt.figure() 
    plt.scatter(x_data, y_data) #画出随机生成数据的散点图
    

    plt.scatter(x_data, y_data) 
    plt.plot (x_data, 1.0 + 2 * x_data) # 画出我们想要学习到的线性函数 y = 2x +1
    

    构建模型

    ** 定义(x)(y)的占位符 **

    x = tf.placeholder("float", name = "x") 
    y = tf.placeholder("float", name = "y")
    

    ** 构建回归模型 **

    def model(x, w, b):
        return tf.multiply(x, w) + b 
    

    ** 创建变量 **

    • Tensorflow变量的声明函数是tf.Variable
    • tf.Variable的作用是保存和更新参数
    • 变量的初始值可以是随机数、常数,或是通过其他变量的初始值计算得到
    w = tf.Variable(-1.0, name="w0") # 构建线性函数的斜率
    b = tf.Variable(0.0, name="b0")   # 构建线性函数的截距
    
    pred = model(x, w, b) # pred是预测值
    

    训练模型

    ** 设置训练参数 **

    train_epochs = 30 # 迭代次数
    learning_rate = 0.05 #学习率
    

    ** 关于学习率(learning_rate)的设置 **

    • 学习率的作用:控制参数更新的幅度。
    • 如果学习率设置过大,可能导致参数在极值附近来回摇摆,无法保证收敛。
    • 如果学习率设置过小,虽然能保证收敛,但优化速度会大大降低,我们需要更多迭代次数才能达到较理想的优化效果。

    ** 定义损失函数 **

    • 损失函数用于描述预测值与真实值之间的误差,从而指导模型收敛方向
    • 常见损失函数:均方差(Mean Square Error, MSE)和交叉熵(cross-entropy)
    # loss_function = tf.pow(y-pred, 2) # 采用方差作为损失函数
    
    loss_function = tf.reduce_mean(tf.pow((y-pred),2))  # 本例中采用均方差作为损失函数
    

    ** 选择优化器 **

    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function)# 梯度下降
    

    ** 在训练中显示损失值 **

    step = 0
    loss_list = []
    # 显示损失值 loss
    # display_step: 控制报告的粒度
    # 例如,如果设为2,则将没训练2个样本输出一次损失值
    # 与超参数不同,修改display_step不会更改模型所学习的规律
    display_step = 10
    

    ** 声明会话 **

    sess = tf.Session()
    

    ** 变量初始化 **

    • 在真正执行计算之前,需将所有变量初始化
    • 通过** tf.global_variables_initializer **函数可实现对所有变量的初始化
    init = tf.global_variables_initializer()
    

    ** 执行训练 **

    sess.run(init)
    
    for epoch in range(train_epochs):
        for xs,ys in zip(x_data, y_data):
            _, loss=sess.run([optimizer,loss_function], feed_dict={x: xs, y: ys})      
            loss_list.append(loss)
            step=step+1
            if step % display_step == 0:
                print("训练迭代:",'%02d' % (epoch+1),"Step:%03d" % (step),"loss=",
                      "{:.9f}".format(loss))
        b0temp=b.eval(session=sess)
        w0temp=w.eval(session=sess)
        plt.plot (x_data, b0temp + w0temp * x_data )# 画图
    
    
    训练迭代: 01 Step:040 loss= 0.075409435
    训练迭代: 01 Step:050 loss= 0.277659148
    训练迭代: 01 Step:060 loss= 0.109922200
    训练迭代: 01 Step:070 loss= 1.018932939
    训练迭代: 01 Step:080 loss= 0.111073710
    训练迭代: 01 Step:090 loss= 0.175155073
    训练迭代: 01 Step:100 loss= 0.711191475
    训练迭代: 01 Step:110 loss= 0.140157878
    训练迭代: 01 Step:120 loss= 0.000191004
    训练迭代: 01 Step:130 loss= 0.191256285
    训练迭代: 02 Step:140 loss= 0.443984509
    训练迭代: 02 Step:150 loss= 0.052047350
    训练迭代: 02 Step:160 loss= 0.000134754
    训练迭代: 02 Step:170 loss= 0.362875491
    训练迭代: 02 Step:180 loss= 0.015833877
    训练迭代: 02 Step:190 loss= 0.003371468
    训练迭代: 02 Step:200 loss= 0.158117563
    训练迭代: 02 Step:210 loss= 0.000004665
    训练迭代: 02 Step:220 loss= 0.086956412
    训练迭代: 02 Step:230 loss= 0.056739785
    训练迭代: 03 Step:240 loss= 0.053117715
    训练迭代: 03 Step:250 loss= 0.081143923
    训练迭代: 03 Step:260 loss= 0.000436464
    训练迭代: 03 Step:270 loss= 0.329459250
    训练迭代: 03 Step:280 loss= 0.026408525
    训练迭代: 03 Step:290 loss= 0.009510754
    训练迭代: 03 Step:300 loss= 0.129814416
    训练迭代: 03 Step:310 loss= 0.000850668
    训练迭代: 03 Step:320 loss= 0.101492099
    训练迭代: 03 Step:330 loss= 0.049019977
    训练迭代: 04 Step:340 loss= 0.037520919
    训练迭代: 04 Step:350 loss= 0.083892979
    训练迭代: 04 Step:360 loss= 0.000469800
    训练迭代: 04 Step:370 loss= 0.326714098
    训练迭代: 04 Step:380 loss= 0.027423598
    训练迭代: 04 Step:390 loss= 0.010171080
    训练迭代: 04 Step:400 loss= 0.127554476
    训练迭代: 04 Step:410 loss= 0.001011788
    训练迭代: 04 Step:420 loss= 0.102769703
    训练迭代: 04 Step:430 loss= 0.048394557
    训练迭代: 05 Step:440 loss= 0.036328830
    训练迭代: 05 Step:450 loss= 0.084126964
    训练迭代: 05 Step:460 loss= 0.000472657
    训练迭代: 05 Step:470 loss= 0.326483309
    训练迭代: 05 Step:480 loss= 0.027510092
    训练迭代: 05 Step:490 loss= 0.010227857
    训练迭代: 05 Step:500 loss= 0.127364576
    训练迭代: 05 Step:510 loss= 0.001026035
    训练迭代: 05 Step:520 loss= 0.102877960
    训练迭代: 05 Step:530 loss= 0.048342019
    训练迭代: 06 Step:540 loss= 0.036229104
    训练迭代: 06 Step:550 loss= 0.084146671
    训练迭代: 06 Step:560 loss= 0.000472903
    训练迭代: 06 Step:570 loss= 0.326463670
    训练迭代: 06 Step:580 loss= 0.027517408
    训练迭代: 06 Step:590 loss= 0.010232608
    训练迭代: 06 Step:600 loss= 0.127348661
    训练迭代: 06 Step:610 loss= 0.001027226
    训练迭代: 06 Step:620 loss= 0.102886833
    训练迭代: 06 Step:630 loss= 0.048337616
    训练迭代: 07 Step:640 loss= 0.036220755
    训练迭代: 07 Step:650 loss= 0.084148332
    训练迭代: 07 Step:660 loss= 0.000472927
    训练迭代: 07 Step:670 loss= 0.326462060
    训练迭代: 07 Step:680 loss= 0.027518081
    训练迭代: 07 Step:690 loss= 0.010233018
    训练迭代: 07 Step:700 loss= 0.127347216
    训练迭代: 07 Step:710 loss= 0.001027349
    训练迭代: 07 Step:720 loss= 0.102887750
    训练迭代: 07 Step:730 loss= 0.048337195
    训练迭代: 08 Step:740 loss= 0.036220074
    训练迭代: 08 Step:750 loss= 0.084148571
    训练迭代: 08 Step:760 loss= 0.000472929
    训练迭代: 08 Step:770 loss= 0.326461762
    训练迭代: 08 Step:780 loss= 0.027518120
    训练迭代: 08 Step:790 loss= 0.010233090
    训练迭代: 08 Step:800 loss= 0.127347127
    训练迭代: 08 Step:810 loss= 0.001027349
    训练迭代: 08 Step:820 loss= 0.102888055
    训练迭代: 08 Step:830 loss= 0.048337091
    训练迭代: 09 Step:840 loss= 0.036219846
    训练迭代: 09 Step:850 loss= 0.084148541
    训练迭代: 09 Step:860 loss= 0.000472929
    训练迭代: 09 Step:870 loss= 0.326461852
    训练迭代: 09 Step:880 loss= 0.027518120
    训练迭代: 09 Step:890 loss= 0.010233066
    训练迭代: 09 Step:900 loss= 0.127347127
    训练迭代: 09 Step:910 loss= 0.001027349
    训练迭代: 09 Step:920 loss= 0.102888055
    训练迭代: 09 Step:930 loss= 0.048337091
    训练迭代: 10 Step:940 loss= 0.036219940
    训练迭代: 10 Step:950 loss= 0.084148571
    训练迭代: 10 Step:960 loss= 0.000472929
    训练迭代: 10 Step:970 loss= 0.326461852
    训练迭代: 10 Step:980 loss= 0.027518120
    训练迭代: 10 Step:990 loss= 0.010233066
    训练迭代: 10 Step:1000 loss= 0.127347127
    训练迭代: 10 Step:1010 loss= 0.001027349
    训练迭代: 10 Step:1020 loss= 0.102888055
    训练迭代: 10 Step:1030 loss= 0.048337091
    训练迭代: 11 Step:1040 loss= 0.036219940
    训练迭代: 11 Step:1050 loss= 0.084148571
    训练迭代: 11 Step:1060 loss= 0.000472929
    训练迭代: 11 Step:1070 loss= 0.326461852
    训练迭代: 11 Step:1080 loss= 0.027518120
    训练迭代: 11 Step:1090 loss= 0.010233066
    训练迭代: 11 Step:1100 loss= 0.127347127
    训练迭代: 11 Step:1110 loss= 0.001027349
    训练迭代: 11 Step:1120 loss= 0.102888055
    训练迭代: 11 Step:1130 loss= 0.048337091
    训练迭代: 12 Step:1140 loss= 0.036219940
    训练迭代: 12 Step:1150 loss= 0.084148571
    训练迭代: 12 Step:1160 loss= 0.000472929
    训练迭代: 12 Step:1170 loss= 0.326461852
    训练迭代: 12 Step:1180 loss= 0.027518120
    训练迭代: 12 Step:1190 loss= 0.010233066
    训练迭代: 12 Step:1200 loss= 0.127347127
    训练迭代: 12 Step:1210 loss= 0.001027349
    训练迭代: 12 Step:1220 loss= 0.102888055
    训练迭代: 12 Step:1230 loss= 0.048337091
    训练迭代: 13 Step:1240 loss= 0.036219940
    训练迭代: 13 Step:1250 loss= 0.084148571
    训练迭代: 13 Step:1260 loss= 0.000472929
    训练迭代: 13 Step:1270 loss= 0.326461852
    训练迭代: 13 Step:1280 loss= 0.027518120
    训练迭代: 13 Step:1290 loss= 0.010233066
    训练迭代: 13 Step:1300 loss= 0.127347127
    训练迭代: 13 Step:1310 loss= 0.001027349
    训练迭代: 13 Step:1320 loss= 0.102888055
    训练迭代: 13 Step:1330 loss= 0.048337091
    训练迭代: 14 Step:1340 loss= 0.036219940
    训练迭代: 14 Step:1350 loss= 0.084148571
    训练迭代: 14 Step:1360 loss= 0.000472929
    训练迭代: 14 Step:1370 loss= 0.326461852
    训练迭代: 14 Step:1380 loss= 0.027518120
    训练迭代: 14 Step:1390 loss= 0.010233066
    训练迭代: 14 Step:1400 loss= 0.127347127
    训练迭代: 14 Step:1410 loss= 0.001027349
    训练迭代: 14 Step:1420 loss= 0.102888055
    训练迭代: 14 Step:1430 loss= 0.048337091
    训练迭代: 15 Step:1440 loss= 0.036219940
    训练迭代: 15 Step:1450 loss= 0.084148571
    训练迭代: 15 Step:1460 loss= 0.000472929
    训练迭代: 15 Step:1470 loss= 0.326461852
    训练迭代: 15 Step:1480 loss= 0.027518120
    训练迭代: 15 Step:1490 loss= 0.010233066
    训练迭代: 15 Step:1500 loss= 0.127347127
    训练迭代: 15 Step:1510 loss= 0.001027349
    训练迭代: 15 Step:1520 loss= 0.102888055
    训练迭代: 15 Step:1530 loss= 0.048337091
    训练迭代: 16 Step:1540 loss= 0.036219940
    训练迭代: 16 Step:1550 loss= 0.084148571
    训练迭代: 16 Step:1560 loss= 0.000472929
    训练迭代: 16 Step:1570 loss= 0.326461852
    训练迭代: 16 Step:1580 loss= 0.027518120
    训练迭代: 16 Step:1590 loss= 0.010233066
    训练迭代: 16 Step:1600 loss= 0.127347127
    训练迭代: 16 Step:1610 loss= 0.001027349
    训练迭代: 16 Step:1620 loss= 0.102888055
    训练迭代: 16 Step:1630 loss= 0.048337091
    训练迭代: 17 Step:1640 loss= 0.036219940
    训练迭代: 17 Step:1650 loss= 0.084148571
    训练迭代: 17 Step:1660 loss= 0.000472929
    训练迭代: 17 Step:1670 loss= 0.326461852
    训练迭代: 17 Step:1680 loss= 0.027518120
    训练迭代: 17 Step:1690 loss= 0.010233066
    训练迭代: 17 Step:1700 loss= 0.127347127
    训练迭代: 17 Step:1710 loss= 0.001027349
    训练迭代: 17 Step:1720 loss= 0.102888055
    训练迭代: 17 Step:1730 loss= 0.048337091
    训练迭代: 18 Step:1740 loss= 0.036219940
    训练迭代: 18 Step:1750 loss= 0.084148571
    训练迭代: 18 Step:1760 loss= 0.000472929
    训练迭代: 18 Step:1770 loss= 0.326461852
    训练迭代: 18 Step:1780 loss= 0.027518120
    训练迭代: 18 Step:1790 loss= 0.010233066
    训练迭代: 18 Step:1800 loss= 0.127347127
    训练迭代: 18 Step:1810 loss= 0.001027349
    训练迭代: 18 Step:1820 loss= 0.102888055
    训练迭代: 18 Step:1830 loss= 0.048337091
    训练迭代: 19 Step:1840 loss= 0.036219940
    训练迭代: 19 Step:1850 loss= 0.084148571
    训练迭代: 19 Step:1860 loss= 0.000472929
    训练迭代: 19 Step:1870 loss= 0.326461852
    训练迭代: 19 Step:1880 loss= 0.027518120
    训练迭代: 19 Step:1890 loss= 0.010233066
    训练迭代: 19 Step:1900 loss= 0.127347127
    训练迭代: 19 Step:1910 loss= 0.001027349
    训练迭代: 19 Step:1920 loss= 0.102888055
    训练迭代: 19 Step:1930 loss= 0.048337091
    训练迭代: 20 Step:1940 loss= 0.036219940
    训练迭代: 20 Step:1950 loss= 0.084148571
    训练迭代: 20 Step:1960 loss= 0.000472929
    训练迭代: 20 Step:1970 loss= 0.326461852
    训练迭代: 20 Step:1980 loss= 0.027518120
    训练迭代: 20 Step:1990 loss= 0.010233066
    训练迭代: 20 Step:2000 loss= 0.127347127
    训练迭代: 20 Step:2010 loss= 0.001027349
    训练迭代: 20 Step:2020 loss= 0.102888055
    训练迭代: 20 Step:2030 loss= 0.048337091
    训练迭代: 21 Step:2040 loss= 0.036219940
    训练迭代: 21 Step:2050 loss= 0.084148571
    训练迭代: 21 Step:2060 loss= 0.000472929
    训练迭代: 21 Step:2070 loss= 0.326461852
    训练迭代: 21 Step:2080 loss= 0.027518120
    训练迭代: 21 Step:2090 loss= 0.010233066
    训练迭代: 21 Step:2100 loss= 0.127347127
    训练迭代: 21 Step:2110 loss= 0.001027349
    训练迭代: 21 Step:2120 loss= 0.102888055
    训练迭代: 21 Step:2130 loss= 0.048337091
    训练迭代: 22 Step:2140 loss= 0.036219940
    训练迭代: 22 Step:2150 loss= 0.084148571
    训练迭代: 22 Step:2160 loss= 0.000472929
    训练迭代: 22 Step:2170 loss= 0.326461852
    训练迭代: 22 Step:2180 loss= 0.027518120
    训练迭代: 22 Step:2190 loss= 0.010233066
    训练迭代: 22 Step:2200 loss= 0.127347127
    训练迭代: 22 Step:2210 loss= 0.001027349
    训练迭代: 22 Step:2220 loss= 0.102888055
    训练迭代: 22 Step:2230 loss= 0.048337091
    训练迭代: 23 Step:2240 loss= 0.036219940
    训练迭代: 23 Step:2250 loss= 0.084148571
    训练迭代: 23 Step:2260 loss= 0.000472929
    训练迭代: 23 Step:2270 loss= 0.326461852
    训练迭代: 23 Step:2280 loss= 0.027518120
    训练迭代: 23 Step:2290 loss= 0.010233066
    训练迭代: 23 Step:2300 loss= 0.127347127
    训练迭代: 23 Step:2310 loss= 0.001027349
    训练迭代: 23 Step:2320 loss= 0.102888055
    训练迭代: 23 Step:2330 loss= 0.048337091
    训练迭代: 24 Step:2340 loss= 0.036219940
    训练迭代: 24 Step:2350 loss= 0.084148571
    训练迭代: 24 Step:2360 loss= 0.000472929
    训练迭代: 24 Step:2370 loss= 0.326461852
    训练迭代: 24 Step:2380 loss= 0.027518120
    训练迭代: 24 Step:2390 loss= 0.010233066
    训练迭代: 24 Step:2400 loss= 0.127347127
    训练迭代: 24 Step:2410 loss= 0.001027349
    训练迭代: 24 Step:2420 loss= 0.102888055
    训练迭代: 24 Step:2430 loss= 0.048337091
    训练迭代: 25 Step:2440 loss= 0.036219940
    训练迭代: 25 Step:2450 loss= 0.084148571
    训练迭代: 25 Step:2460 loss= 0.000472929
    训练迭代: 25 Step:2470 loss= 0.326461852
    训练迭代: 25 Step:2480 loss= 0.027518120
    训练迭代: 25 Step:2490 loss= 0.010233066
    训练迭代: 25 Step:2500 loss= 0.127347127
    训练迭代: 25 Step:2510 loss= 0.001027349
    训练迭代: 25 Step:2520 loss= 0.102888055
    训练迭代: 25 Step:2530 loss= 0.048337091
    训练迭代: 26 Step:2540 loss= 0.036219940
    训练迭代: 26 Step:2550 loss= 0.084148571
    训练迭代: 26 Step:2560 loss= 0.000472929
    训练迭代: 26 Step:2570 loss= 0.326461852
    训练迭代: 26 Step:2580 loss= 0.027518120
    训练迭代: 26 Step:2590 loss= 0.010233066
    训练迭代: 26 Step:2600 loss= 0.127347127
    训练迭代: 26 Step:2610 loss= 0.001027349
    训练迭代: 26 Step:2620 loss= 0.102888055
    训练迭代: 26 Step:2630 loss= 0.048337091
    训练迭代: 27 Step:2640 loss= 0.036219940
    训练迭代: 27 Step:2650 loss= 0.084148571
    训练迭代: 27 Step:2660 loss= 0.000472929
    训练迭代: 27 Step:2670 loss= 0.326461852
    训练迭代: 27 Step:2680 loss= 0.027518120
    训练迭代: 27 Step:2690 loss= 0.010233066
    训练迭代: 27 Step:2700 loss= 0.127347127
    训练迭代: 27 Step:2710 loss= 0.001027349
    训练迭代: 27 Step:2720 loss= 0.102888055
    训练迭代: 27 Step:2730 loss= 0.048337091
    训练迭代: 28 Step:2740 loss= 0.036219940
    训练迭代: 28 Step:2750 loss= 0.084148571
    训练迭代: 28 Step:2760 loss= 0.000472929
    训练迭代: 28 Step:2770 loss= 0.326461852
    训练迭代: 28 Step:2780 loss= 0.027518120
    训练迭代: 28 Step:2790 loss= 0.010233066
    训练迭代: 28 Step:2800 loss= 0.127347127
    训练迭代: 28 Step:2810 loss= 0.001027349
    训练迭代: 28 Step:2820 loss= 0.102888055
    训练迭代: 28 Step:2830 loss= 0.048337091
    训练迭代: 29 Step:2840 loss= 0.036219940
    训练迭代: 29 Step:2850 loss= 0.084148571
    训练迭代: 29 Step:2860 loss= 0.000472929
    训练迭代: 29 Step:2870 loss= 0.326461852
    训练迭代: 29 Step:2880 loss= 0.027518120
    训练迭代: 29 Step:2890 loss= 0.010233066
    训练迭代: 29 Step:2900 loss= 0.127347127
    训练迭代: 29 Step:2910 loss= 0.001027349
    训练迭代: 29 Step:2920 loss= 0.102888055
    训练迭代: 29 Step:2930 loss= 0.048337091
    训练迭代: 30 Step:2940 loss= 0.036219940
    训练迭代: 30 Step:2950 loss= 0.084148571
    训练迭代: 30 Step:2960 loss= 0.000472929
    训练迭代: 30 Step:2970 loss= 0.326461852
    训练迭代: 30 Step:2980 loss= 0.027518120
    训练迭代: 30 Step:2990 loss= 0.010233066
    训练迭代: 30 Step:3000 loss= 0.127347127
    训练迭代: 30 Step:3010 loss= 0.001027349
    训练迭代: 30 Step:3020 loss= 0.102888055
    训练迭代: 30 Step:3030 loss= 0.048337091
    

    从上图可以看出,由于本案例所拟合的模型较简单,训练3次之后已经接近收敛。
    对于复杂模型,需要更多次训练才能收敛。

    ** 打印结果 **

    print  ("w:", sess.run(w)) # w的值应该在2附近 
    print ("b:", sess.run(b)) # b的值应该在1附近 
    
    w: 1.9822965
    b: 1.0420127
    

    ** 可视化 **

    plt.scatter(x_data,y_data,label='Original data')
    plt.plot (x_data, x_data * sess.run(w) + sess.run(b),label='Fitted line',color='r',linewidth=3)
    plt.legend(loc=2)# 通过参数loc指定图例位置
    

    图形化显示损失值

    plt.plot(loss_list)
    

    plt.plot(loss_list,'r+')
    

    进行预测

    x_test = 12.0
    output = sess.run(w)  * x_test + sess.run(b)
    print("预测值:%f" % output)
    target = 2 * x_test + 1.0
    print("目标值:%f" % target)
    
    预测值:24.829570
    目标值:25.000000
    

    ** 以上是利用Tensorflow训练一个线性模型并进行预测的完整过程。
    通过逐渐降低损失值loss来训练参数(w)(b)拟合 (y = 2x + 1)中的系数2和1。 **

    小结

    ** 通过一个简单的例子介绍了利用Tensorflow实现机器学习的思路,重点讲解了下述步骤: **

    ** - (1)生成人工数据集及其可视化 **

    ** - (2)构建线性模型 **

    ** - (3)定义损失函数 **

    ** - (4)最小化损失函数 **

    ** - (5)训练结果的可视化 **

    ** - (6)利用学习到的模型进行预测 **

  • 相关阅读:
    nodejs关于前后端图片上传的思路及实现代码
    vue项目better-scroll使用注意点
    nuxt.js的使用和开发,一款vue基于服务器SSR渲染工具
    vue-cli3.0中自定css、js和图片的打包路径
    Vue.js watch监视属性
    React Developers的10个超实用神奇工具
    Vue 3.0 体验 Vue Function API
    Dojo Store 概念详解
    React Native 实现城市选择组件
    java 环境变量 设置 问题
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/13266039.html
Copyright © 2020-2023  润新知