This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.
Output Specification:
Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.
Sample Input:
6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6
Sample Output:
3 4
题意:
做这题之前首先要先去了解什么是拓扑排序,可以参考https://blog.csdn.net/qq_35644234/article/details/60578189
给出一个图,再给几组数据,让你判断这几组数据是否符合拓扑排序
题解:
保存入度数和出度的节点。用一个数组来统计每个点的入度,vector保存出度的节点,然后就可以开始判断。在判断的时候,将与这个点去掉,就是指这个点连接的所有点的入度都减了1。
AC代码:
#include<bits/stdc++.h> using namespace std; int n,m,u,v; int in[1005],inx[1005]; vector<int>out[1005]; int main(){ cin>>n>>m; memset(in,0,sizeof(in)); for(int i=1;i<=m;i++){ cin>>u>>v; out[u].push_back(v);//保存出去的节点 in[v]++; //计算入度 } int k; cin>>k; int a[105]; int num=0; for(int i=0;i<k;i++){ int f=1; memcpy(inx, in, sizeof(in));//将in拷贝给inx for(int j=1;j<=n;j++){ cin>>u; if(inx[u]!=0||f==0){ f=0; continue; } for(int p=0;p<out[u].size();p++){//对受影响的节点的入度-- inx[out[u].at(p)]--; } } if(!f){ a[++num]=i; } } for(int i=1;i<=num;i++){ cout<<a[i]; if(i!=num) cout<<" "; } return 0; }