• PAT 甲级 1053 Path of Equal Weight (30 分)(dfs,vector内元素排序,有一小坑点)


    1053 Path of Equal Weight (30 分)
     

    Given a non-empty tree with root R, and with weight Wi​​ assigned to each tree node Ti​​. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.

    Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in the following figure: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in the figure.

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 0, the number of nodes in a tree, M (<), the number of non-leaf nodes, and 0, the given weight number. The next line contains N positive numbers where Wi​​ (<) corresponds to the tree node Ti​​. Then Mlines follow, each in the format:

    ID K ID[1] ID[2] ... ID[K]
    

    where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.

    Output Specification:

    For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.

    Note: sequence { is said to be greater than sequence { if there exists 1 such that Ai​​=Bi​​ for ,, and Ak+1​​>Bk+1​​.

    Sample Input:

    20 9 24
    10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
    00 4 01 02 03 04
    02 1 05
    04 2 06 07
    03 3 11 12 13
    06 1 09
    07 2 08 10
    16 1 15
    13 3 14 16 17
    17 2 18 19
    

    Sample Output:

    10 5 2 7
    10 4 10
    10 3 3 6 2
    10 3 3 6 2

    题意:

    给一个树,根为1 ,输出从根到叶子的权值和=m的所有路径(顺序有要求)

    题解:

           乍一看,就是用vector存储各节点和它的子节点,然后再用个结构体队列bfs一下,后来发现路径是可以找到,但是bfs很难做到题目要求的输出顺序。

            所以,改用dfs,但dfs首先要对各节点的子节点按权重从大到小排序,就需要vector内元素排序,以前没用过,sort(v.begin(), v.end(), sortFun)。dfs以一个结构体为单位,存有遍历到的节点编号、权重和和路径p。

          但是测试点1一直过不了,有个小坑点,没注意到,就是根节点要特判,可能一个根节点就符合条件了,不需要再遍历了。

    AC代码:

    #include<iostream>
    #include<stack>
    #include<queue>
    #include<cmath>
    #include<algorithm>
    #include<vector>
    #include<string>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int a[105];//每个点的权重
    int n,m,w;
    vector<int>v[105];//存储每个点的字节点编号
    struct node{
        int key;//当前点编号
        int wei;//到当前点的权重和
        queue<int>p;//记录路径
    };
    bool sortFun(const int &p1, const int &p2)//vector内元素排序
    {
        return a[p1] > a[p2];//升序排列  
    }
    void dfs(node x){
        for(int i=0;i<v[x.key].size();i++){
            node y;
            y.key=v[x.key].at(i);
            if(x.wei+a[y.key]==w&&v[y.key].size()==0){//必须要保证已经走到底了
                queue<int>Q=x.p;//输出
                while(!Q.empty()){
                    cout<<Q.front()<<" ";
                    Q.pop();
                }
                cout<<a[y.key]<<endl;
            }else if(x.wei+a[y.key]<w){//新的递归下去
                y.wei=x.wei+a[y.key];
                y.p=x.p;
                y.p.push(a[y.key]);
                dfs(y);
            }
        }
    }
    
    int main(){
        cin>>n>>m>>w;
        for(int i=0;i<n;i++) cin>>a[i];
        for(int i=1;i<=m;i++){
            int x,k;
            cin>>x>>k;
            for(int j=1;j<=k;j++){
                int y;
                cin>>y;
                v[x].push_back(y);
            }
            //因为输出的路径权重 要按降序,所以可以在DFS之前:给每一个结点的子节点排序
            sort(v[x].begin(), v[x].end(), sortFun);
        }
        if(a[0]==w){//坑点:根节点要特判
            cout<<a[0]<<endl;
        }else{
            node x;
            x.key=0;
            x.wei=a[0];
            while(!x.p.empty()) x.p.pop();
            x.p.push(a[0]);
            dfs(x);
        }
        return 0;
    }
  • 相关阅读:
    MySQL-EXPLAIN执行计划字段解释
    MySQL-EXPLAIN执行计划Extra解释
    HTTP与HTTPS的区别
    【面试】Java中sleep和wait的区别
    Nginx之前后端分离(入门)
    玩程序 之 一 . 字符串处理工具(可通过C#脚本扩展)
    C#实现下载功能,可用于软件自动更新
    对c#剪切板Clipboard占用的问题一点解决方法
    C# 制作 仪表
    C#使用自定义字体(从文件获取)
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/11542220.html
Copyright © 2020-2023  润新知