1023 Have Fun with Numbers (20 分)
Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:
1234567899
Sample Output:
Yes
2469135798
解题思路:
给定一个数,乘以2之后,各个数位的出现次数,是否与乘之前是否相同,相同输出Yes,否认输出No,然后下一行打印出乘2之后的各个数位。
这个题目是属于超大数运算的类型,题目给出的最高数位是20位,那么即便是用最高的unsigned long long 也会面临溢出的情况,所以输入和输出,只能用string,诸位乘2,然后再记录每一位出现的次数,相比较就行。
大数乘法!全排列的意思是:各个数字出现的次数分别相同!
AC代码:
#include<bits/stdc++.h> using namespace std; char a[21]; char b[21]; int ori[11]; int ne[11]; int main(){ memset(ori,0,sizeof(ori)); memset(ne,0,sizeof(ne)); cin>>a; //先反着放 int l=strlen(a); for(int i=l-1;i>=0;i--){ b[l-i]=a[i]; ori[a[i]-'0']++; } //大数乘法 int x=0; for(int i=1;i<=l;i++){ int y=b[i]-'0'; y*=2;y+=x; b[i]=y%10+'0'; x=y/10; ne[b[i]-'0']++; } int l2=l; if(x!=0){ l2++; b[l2]=x+'0'; ne[b[l2]-'0']++; } //判断 int f=1; for(int i=0;i<=9;i++){ if(ne[i]!=ori[i]){ f=0; break; } } if(f){ cout<<"Yes"<<endl; }else{ cout<<"No"<<endl; } for(int i=l2;i>=1;i--){ cout<<b[i]; } return 0; }