• scikit-learn机器学习(二)逻辑回归进行二分类(垃圾邮件分类),二分类性能指标,画ROC曲线,计算acc,recall,presicion,f1


    数据来自UCI机器学习仓库中的垃圾信息数据集

    数据可从http://archive.ics.uci.edu/ml/datasets/sms+spam+collection下载

    转成csv载入数据

    import matplotlib
    matplotlib.rcParams['font.sans-serif']=[u'simHei']
    matplotlib.rcParams['axes.unicode_minus']=False
    import pandas as pd
    import numpy as np
    from sklearn.feature_extraction.text import TfidfVectorizer
    from sklearn.linear_model.logistic import LogisticRegression
    from sklearn.model_selection import train_test_split,cross_val_score
    
    df = pd.read_csv('data/SMSSpamCollection.csv',header=None)
    print(df.head)
    
    print("垃圾邮件个数:%s" % df[df[0]=='spam'][0].count())
    print("正常邮件个数:%s" % df[df[0]=='ham'][0].count())

    垃圾邮件个数:747
    正常邮件个数:4825

    创建TfidfVectorizer实例,将训练文本和测试文本都进行转换

    X = df[1].values
    y = df[0].values
    X_train_raw,X_test_raw,y_train,y_test=train_test_split(X,y)
    vectorizer = TfidfVectorizer()
    X_train = vectorizer.fit_transform(X_train_raw)
    X_test = vectorizer.transform(X_test_raw)

    建立逻辑回归模型训练和预测

    LR = LogisticRegression()
    LR.fit(X_train,y_train)
    predictions = LR.predict(X_test)
    for i,prediction in enumerate(predictions[:5]):
        print("预测为 %s ,信件为 %s" % (prediction,X_test_raw[i]))
    预测为 ham ,信件为 Send to someone else :-)
    预测为 ham ,信件为 Easy ah?sen got selected means its good..
    预测为 ham ,信件为 Sorry da. I gone mad so many pending works what to do.
    预测为 ham ,信件为 What not under standing.
    预测为 spam ,信件为 SIX chances to win CASH! From 100 to 20,000 pounds txt> CSH11 and send to 87575. Cost 150p/day, 6days, 16+ TsandCs apply Reply HL 4 info

    二元分类性能指标:混淆矩阵

    # In[2]二元分类分类指标
    from sklearn.metrics import confusion_matrix
    import matplotlib.pyplot as plt
    # predictions 与 y_test
    confusion_matrix = confusion_matrix(y_test,predictions)
    print(confusion_matrix)
    plt.matshow(confusion_matrix)
    plt.title("混淆矩阵")
    plt.colorbar()
    plt.ylabel("真实值")
    plt.xlabel("预测值")
    plt.show()

    [[1217    1]
     [  52  123]]

    准确率,召回率,精准率,F1值

    # In[3] 给出 precision    recall  f1-score   support
    from sklearn.metrics import classification_report
    print(classification_report(y_test,predictions))
    
    from sklearn.metrics import roc_curve,auc
    # 准确率
    scores =  cross_val_score(LR,X_train,y_train,cv=5)
    print("准确率为: ",scores)
    print("平均准确率为: ",np.mean(scores))
    
    # 有时必须要将标签转为数值
    from sklearn.preprocessing import LabelEncoder
    class_le = LabelEncoder()
    y_train_n = class_le.fit_transform(y_train)
    y_test_n = class_le.fit_transform(y_test)
    
    # 精准率
    precision =  cross_val_score(LR,X_train,y_train_n,cv=5,scoring='precision')
    print("平均精准率为: ",np.mean(precision))
    # 召回率
    recall =  cross_val_score(LR,X_train,y_train_n,cv=5,scoring='recall')
    print("平均召回率为: ",np.mean(recall))   
    # F1值
    f1 =  cross_val_score(LR,X_train,y_train_n,cv=5,scoring='f1')
    print("平均F1值为: ",np.mean(f1))  
    准确率为:  [0.96654719 0.95459976 0.95449102 0.9508982  0.96047904]
    平均准确率为:  0.9574030433756144
    平均精准率为:  0.9906631114805584
    平均召回率为:  0.6956979405034325
    平均F1值为:  0.8162874707978786

    画出ROC曲线,AUC为ROC曲线以下部分的面积

    # In[4] ROC曲线 y_test_n为数值
    predictions_pro = LR.predict_proba(X_test)
    false_positive_rate, recall, thresholds = roc_curve(y_test_n,predictions_pro[:,1])
    roc_auc = auc(false_positive_rate, recall)
    plt.title("受试者操作特征曲线(ROC)")
    plt.plot(false_positive_rate, recall, 'b', label='AUC = % 0.2f' % roc_auc)
    plt.legend(loc='lower right')
    plt.plot([0,1],[0,1],'r--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.0])
    plt.xlabel('假阳性率')
    plt.ylabel('召回率')
    plt.show()
        

     所有代码:

    # -*- coding: utf-8 -*-
    import matplotlib
    matplotlib.rcParams['font.sans-serif']=[u'simHei']
    matplotlib.rcParams['axes.unicode_minus']=False
    import pandas as pd
    import numpy as np
    from sklearn.feature_extraction.text import TfidfVectorizer
    from sklearn.linear_model.logistic import LogisticRegression
    from sklearn.model_selection import train_test_split,cross_val_score
    
    df = pd.read_csv('data/SMSSpamCollection.csv',header=None)
    print(df.head)
    
    print("垃圾邮件个数:%s" % df[df[0]=='spam'][0].count())
    print("正常邮件个数:%s" % df[df[0]=='ham'][0].count())
    
    # In[1]
    X = df[1].values
    y = df[0].values
    X_train_raw,X_test_raw,y_train,y_test=train_test_split(X,y)
    vectorizer = TfidfVectorizer()
    X_train = vectorizer.fit_transform(X_train_raw)
    X_test = vectorizer.transform(X_test_raw)
    
    LR = LogisticRegression()
    LR.fit(X_train,y_train)
    predictions = LR.predict(X_test)
    for i,prediction in enumerate(predictions[:5]):
        print("预测为 %s ,信件为 %s" % (prediction,X_test_raw[i]))
        
    
    
    # In[2]二元分类分类指标
    from sklearn.metrics import confusion_matrix
    import matplotlib.pyplot as plt
    # predictions 与 y_test
    confusion_matrix = confusion_matrix(y_test,predictions)
    print(confusion_matrix)
    plt.matshow(confusion_matrix)
    plt.title("混淆矩阵")
    plt.colorbar()
    plt.ylabel("真实值")
    plt.xlabel("预测值")
    plt.show()
    
    # In[3] 给出 precision    recall  f1-score   support
    from sklearn.metrics import classification_report
    print(classification_report(y_test,predictions))
    
    from sklearn.metrics import roc_curve,auc
    # 准确率
    scores =  cross_val_score(LR,X_train,y_train,cv=5)
    print("准确率为: ",scores)
    print("平均准确率为: ",np.mean(scores))
    
    # 必须要将标签转为数值
    from sklearn.preprocessing import LabelEncoder
    class_le = LabelEncoder()
    y_train_n = class_le.fit_transform(y_train)
    y_test_n = class_le.fit_transform(y_test)
    
    # 精准率
    precision =  cross_val_score(LR,X_train,y_train_n,cv=5,scoring='precision')
    print("平均精准率为: ",np.mean(precision))
    # 召回率
    recall =  cross_val_score(LR,X_train,y_train_n,cv=5,scoring='recall')
    print("平均召回率为: ",np.mean(recall))   
    # F1值
    f1 =  cross_val_score(LR,X_train,y_train_n,cv=5,scoring='f1')
    print("平均F1值为: ",np.mean(f1))  
    
    # In[4] ROC曲线 y_test_n为数值
    predictions_pro = LR.predict_proba(X_test)
    false_positive_rate, recall, thresholds = roc_curve(y_test_n,predictions_pro[:,1])
    roc_auc = auc(false_positive_rate, recall)
    plt.title("受试者操作特征曲线(ROC)")
    plt.plot(false_positive_rate, recall, 'b', label='AUC = % 0.2f' % roc_auc)
    plt.legend(loc='lower right')
    plt.plot([0,1],[0,1],'r--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.0])
    plt.xlabel('假阳性率')
    plt.ylabel('召回率')
    plt.show() 
  • 相关阅读:
    Kafka Eagle安装
    CentOS下OpenJDK设置JAVA_HOME
    设计模式:解释器模式
    Typora主题推荐
    SpringMVC的<mvc:annotation-driven />
    SpringMVC的视图解析器
    数字化营销
    《计算广告》第二版思维导图
    舆情计算
    实时数仓
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/11185223.html
Copyright © 2020-2023  润新知