Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 42478 Accepted Submission(s): 15335
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
Sample Output
6
8
Hint
Huge input, scanf and dynamic programming is recommended.题意:给出m和n,代表着有n个数,然后要你在这个n个数中找出m个连续子序列的最大和
思路:这道题难点不在状态方程,关键在于时间和空间的优化
首先分析下状态,影响我们决策的有两个因素 “数值” “序列数”,所以我们先把状态设置为二维 dp[ i ][ j ],代表着前 j 个数中取 i 段 的最大值
然后分析下状态转移方程,按照思考,我们需要决定的就是 “要不要这个数” 和 “这个数放在哪个子序列比较好”,所以我们可以推出
dp[ i ][ j ] = max ( dp[ i ][ j -1 ], dp [ i-1 ][ x ] )+num[ j ]
num[] 就是存放原始序列的数,x 就是 i-1~j-1的某一个数 ( 因为 dp[ i-1] 代表前面已经有i-1段了,所以一定大于 i-1),dp[ i -1][ x] 就代表着前 j 个数取 i-1 段的最大值.
这个方程代表 决定 第 j 个数,是放在第 i 段上,还是 自己单独成为 一段。
我们从方程中可以知道,决定“当前状态”的只与“前一状态有关”,
所以可以用滚动数组( 第一次听说的话,可以先去看看01背包的滚动数组优化 )来优化,
而 dp[ i -1][ x]可以用一个一维数组来优化,
我们知道 它代表着的是 “ 前 j 个数取 i-1 段的最大值 ” 所以 新设置一个一维数组 head[ j ] 代表着” 前 j 个数取 i-1 段的最大值 “
所以我们的方程变成了这样
dp[ j ]= max( dp[ j -1], head[ j - 1])+num[ j ]
还要记得实时更新head[]数组,因为dp[]是滚动的,而head[]也需要滚动
//#pragma comment(linker, "/STACK:1024000000,1024000000") //#pragma GCC optimize(2) //#include<bits/stdc++.h> #include <algorithm> #include <iostream> #include<sstream> #include<iterator> #include<cstring> #include<string> #include<cstdio> #include<cctype> #include<vector> #include<deque> #include<queue> #include<stack> #include<map> #include<set> using namespace std; typedef double dou; typedef long long ll; #define pai acos(-1.0) #define M 1000005 #define inf 0x3f3f3f3f #define mod 1e18 #define left k<<1 #define right k<<1|1 #define W(a) while(a) #define ms(a,b) memset(a,b,sizeof(a)) int n, m, ans; int num[M], head[M], dp[M]; int main() { ios::sync_with_stdio(false); while (cin >> m >> n) { ms(head, 0), ms(dp, 0); for (int i = 1; i <= n; i++) { cin >> num[i]; } for (int i = 1; i <= m; i++) { ans = -inf; for (int j = i; j <= n; j++) { dp[j] = max(dp[j - 1], head[j - 1]) + num[j]; head[j - 1] = ans;//此时的ans是i-1段时候的最大值 ans = max(dp[j], ans);//此时的ans是i段的时候的最大值 } } cout << ans << endl; } return 0; }