• 机电传动控制第四周学习笔记和仿真作业


    机电传动控制第四周学习笔记

    1. 三相异步电机的基本结构由定子和转子组成。其中定子由铁芯,绕组和机座组成,转子由铁芯和绕组组成。
    2. 旋转磁场的级数和旋转速度

    N0=60f/p

    3.转差率 S=(n0-n)/n0

    4.定子绕组有星形连接和三角形连接两种

    5.三相异步电机的固有机械特性有四个特殊点:

    T=0,n=n0(S=0)理想空载工作点

    T=TN,n=nN(S=SN) 额定工作点

    T=Tst,n=0(S=1) 启动工作点

    T=Tmax,n=nm(S=Sm) 临界工作点

    6.降压时的人为机械特性:Sm不变,Tmax减小,人为与固有的转矩之比等于相应电压的二次方之比

    7.定子电路串接电阻或电抗的人为机械特性:与降压相似

    8.笼型异步电机的启动方法:

    直接启动 : Ist/IN<=0.75+电源总容量/(4x电动机功率)

    电阻降压启动:适用于空载和轻载,不经济

    Y-降压启动:启动电流小,经济,但启动转矩小,且启动电压不能按实际需求调节,适用空载和轻载。

    自耦变压器降压调节:不适用于频繁的启动,适用于启动转矩大,容量较大的电机。

    9.三相异步电机的调速有变级对数调速,变转差率调速和变频调速。

    10.制动特性:反馈制动,反接制动,能耗制动。

     

    仿真结果:

    采用了全压启动,转子串接电阻调速,以及电源反接进行制动

     

    代码:

     

    model SACIM "A Simple AC Induction Motor Model"

     

    type Voltage=Real(unit="V");

     

    type Current=Real(unit="A");

     

    type Resistance=Real(unit="Ohm");

     

    type Inductance=Real(unit="H");

     

    type Speed=Real(unit="r/min");

     

    type Torque=Real(unit="N.m");

     

    type Inertia=Real(unit="kg.m^2");

     

    type Frequency=Real(unit="Hz");

     

    type Flux=Real(unit="Wb");

     

    type Angle=Real(unit="rad");

     

    type AngularVelocity=Real(unit="rad/s");

     

     

     

    constant Real Pi = 3.1415926;

     

     

     

    Current i_A"A Phase Current of Stator";

     

    Current i_B"B Phase Current of Stator";

     

    Current i_C"C Phase Current of Stator";

     

    Voltage u_A"A Phase Voltage of Stator";

     

    Voltage u_B"B Phase Voltage of Stator";

     

    Voltage u_C"C Phase Voltage of Stator";

     

    Current i_a"A Phase Current of Rotor";

     

    Current i_b"B Phase Current of Rotor";

     

    Current i_c"C Phase Current of Rotor";

     

    Frequency f_s"Frequency of Stator";

     

    Torque Tm"Torque of the Motor";

     

    Speed n"Speed of the Motor";

     

     

     

    Flux Psi_A"A Phase Flux-Linkage of Stator";

     

    Flux Psi_B"B Phase Flux-Linkage of Stator";

     

    Flux Psi_C"C Phase Flux-Linkage of Stator";

     

    Flux Psi_a"a Phase Flux-Linkage of Rotor";

     

    Flux Psi_b"b Phase Flux-Linkage of Rotor";

     

    Flux Psi_c"c Phase Flux-Linkage of Rotor";

     

     

     

    Angle phi"Electrical Angle of Rotor";

     

    Angle phi_m"Mechnical Angle of Rotor";

     

    AngularVelocity w"Angular Velocity of Rotor";

     

     

     

    Torque Tl"Load Torque";

     

     

     

    Resistance Rs"Stator Resistance";

     

    parameter Resistance Rr=0.408"Rotor Resistance";

     

    parameter Inductance Ls = 0.00252"Stator Leakage Inductance";

     

    parameter Inductance Lr = 0.00252"Rotor Leakage Inductance";

     

    parameter Inductance Lm = 0.00847"Mutual Inductance";

     

    parameter Frequency f_N = 50"Rated Frequency of Stator";

     

    parameter Voltage u_N = 220"Rated Phase Voltage of Stator";

     

    parameter Real p =2"number of pole pairs";

     

    parameter Inertia Jm = 0.1"Motor Inertia";

     

    parameter Inertia Jl = 0.1"Load Inertia";

     

    parameter Real s1=0.5369"frequency rate";

     

    parameter Real s2=0.056"stable frequency rate";

     

    parameter Real s3=0.4026"another frequency rate";

     

    parameter Real P=0.7"stoping rate";

     

     

    initial equation

    Psi_A = 0;

    Psi_B = 0;

    Psi_C = 0;

    Psi_a = 0;

    Psi_b = 0;

    Psi_c = 0;

    phi = 0;

    w = 0;

    equation

    u_A = Rs * i_A + 1000 * der(Psi_A);

    u_B = Rs * i_B + 1000 * der(Psi_B);

    u_C = Rs * i_C + 1000 * der(Psi_C);

    0 = Rr * i_a + 1000 * der(Psi_a);

    0 = Rr * i_b + 1000 * der(Psi_b);

    0 = Rr * i_c + 1000 * der(Psi_c)

    Psi_A = (Lm+Ls)*i_A + (-0.5*Lm)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi))*i_a + (Lm*cos(phi+2*Pi/3))*i_b + (Lm*cos(phi-2*Pi/3))*i_c;

    Psi_B = (-0.5*Lm)*i_A + (Lm+Ls)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi-2*Pi/3))*i_a + (Lm*cos(phi))*i_b + (Lm*cos(phi+2*Pi/3))*i_c;

    Psi_C = (-0.5*Lm)*i_A + (-0.5*Lm)*i_B + (Lm+Ls)*i_C + (Lm*cos(phi+2*Pi/3))*i_a + (Lm*cos(phi-2*Pi/3))*i_b + (Lm*cos(phi))*i_c;

    Psi_a = (Lm*cos(phi))*i_A + (Lm*cos(phi-2*Pi/3))*i_B + (Lm*cos(phi+2*Pi/3))*i_C + (Lm+Lr)*i_a + (-0.5*Lm)*i_b + (-0.5*Lm)*i_c;

    Psi_b = (Lm*cos(phi+2*Pi/3))*i_A + (Lm*cos(phi))*i_B + (Lm*cos(phi-2*Pi/3))*i_C + (-0.5*Lm)*i_a + (Lm+Lr)*i_b + (-0.5*Lm)*i_c;

    Psi_c = (Lm*cos(phi-2*Pi/3))*i_A + (Lm*cos(phi+2*Pi/3))*i_B + (Lm*cos(phi))*i_C + (-0.5*Lm)*i_a + (-0.5*Lm)*i_b + (Lm+Lr)*i_c;

    Tm=-p*Lm*((i_A*i_a+i_B*i_b+i_C*i_c)*sin(phi)+(i_A*i_b+i_B*i_c+i_C*i_a)*sin(phi+2*Pi/3)+(i_A*i_c+i_B*i_a+i_C*i_b)*sin(phi-2*Pi/3));

    w = 1000 * der(phi_m);

    phi_m = phi/p;

    n= w*60/(2*Pi);

    Tm-Tl = (Jm+Jl) * 1000 * der(w);

    Tl = 10;

    if time <= 100 then

    f_s = 0;

    Rs = 0.531;

    u_A = 0;

    u_B = 0;

    u_C = 0;

    elseif time<=810 then

    f_s = f_N*s1;

    Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s1;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s1;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s1;

    elseif time<=815 then

    f_s = f_N*s1;

    Rs = 8;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s1;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s1;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s1;

    elseif time<=970 then

    f_s = f_N*s1;

    Rs = 0.6;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s1;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s1;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s1;

    elseif time<=1000then

    f_s = f_N*s1;

    Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s1;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s1;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s1;

    elseif time<=1500 then

    f_s = f_N*s2;

    Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s2;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s2;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s2;

    elseif time<=1515 then

    f_s = f_N*s3;

    Rs = 5;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s3;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s3;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s3;

    elseif time<=2220 then

    f_s = f_N*s3;

    Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s3;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s3;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s3;

    elseif time<=2250 then

    f_s = f_N*P*s1;

    Rs = 3.5;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s1*P;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s1*P;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s1*P;

    elseif time<=2410 then

    f_s = f_N*s1;

    Rs = 0.531;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s1;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s1;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s1;

    else

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000)*s2;

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3)*s2;

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3)*s2;

    f_s = f_N*s2;

    Rs = 0.531;

    end if;

    end SACIM;

     

     

    100-300ms加速

    300-800ms恒速800r/min

    800-1000ms减速

    1000-1500ms保持静止

    1500-1650ms加速下降

    1650-2250ms恒速600r/min

    2250-2410ms减速到静止

     

    总用时2410ms

  • 相关阅读:
    delphi AlphaControls
    MATLAB 中NORM运用
    matlab画图形函数 semilogx
    fir2(n,f,m)
    离散系统频响特性函数freqz()
    snr ber Eb/N0之间的区别与联系
    MATLAB中白噪声的WGN和AWGN函数的使用
    matlab 功率谱分析
    用matlab实现同一个序列重复N倍
    Stem函数绘图
  • 原文地址:https://www.cnblogs.com/cai0422/p/5299931.html
Copyright © 2020-2023  润新知