题面
给定(a_1,..,a_n),定义(f(x,k)=sum_{i=1}^n(x+a_i)^k,g(t,k)=sum_{x=0}^tf(x,k)),给定(T,K),请你对(forall iin[0,K]),求出(g(T,i)),对(10^9+7)取模
前置芝士
伯努利数
什么?你不会伯努利数?那你先去看看这篇文章
(MTT)
什么?看到这模数你说你不会(MTT)?出门左转洛谷模板区啥都有
题解
cjj拿着这题来问咱,咱发现自己跟个白痴一样啥也不会……
好毒瘤啊……虽然过了样例之后就(1A)了比较爽……但这还是多项式啊……
首先,对(f(x,k)),有
[egin{aligned}
f(x,k)
&=sum_{i=1}^n(x+a_i)^k\
&=sum_{i=1}^nsum_{j=0}^k{kchoose j}x^j{a_i}^{k-j}\
&=sum_{j=0}^k{kchoose j}x^jsum_{i=1}^n{a_i}^{k-j}\
end{aligned}
]
然后对(g(t,k)),有
[g(t,k)=sum_{x=0}^tsum_{j=0}^k{kchoose j}x^jsum_{i=1}^n{a_i}^{k-j}
]
写成卷积形式
[{g(t,k)over k!}=sum_{j=0}^k{sum_{x=0}^tx^jover j!}{sum_{i=1}^n{a_i}^{k-j}over (k-j)!}
]
我们需要求出(G(x))的第(k)项的系数乘上(k!)就是题目中所说的(g(T,k))的答案
所以我们现在需要快速求出后面两个多项式的系数
左边
令左边的多项式为(F(x)),这是一个关于自然数幂和的东西,那么就得上伯努利数了
不过注意正常的伯努利数求自然数幂和是(sum_{i=0}^{n-1}i^k)而这里是(sum_{i=0}^{n}i^k),不要忘了加上(n^k)
然后接下来就是推倒的时间
[egin{aligned}
left[x^k
ight]F
&=sum_{i=0}^ti^k\
&=t^k+{1over k+1}sum_{i=0}^k{k+1choose i}B_it^{k+1-i}\
&=t^k+k!sum_{i=0}^k{B_iover i!}{t^{k+1-i}over (k+1-i)!}
end{aligned}
]
已经可以写成卷积的形式了,卷积出来的柿子的第(k+1)项乘上(k!)加上(t^k)就是([x^k]F)了
不过注意卷积的柿子中并没有({B_{k+1}over {(k+1)!}} imes {t^0over 0!})这一项,所以要把({t^0over 0!})设为(0)才行
顺便注意([x^0]F)应该是(t+1)
右边
令第二个多项式为(A(z)),有
[egin{aligned}
A(x)=sum_{i=0}^infty x^i{sum_{k=1}^n{a_k}^iover i!}
end{aligned}
]
然后继续推倒
[egin{aligned}
A(x)
&=sum_{i=0}^infty x^isum_{j=1}^n{a_j}^i\
&=sum_{j=1}^nsum_{i=0}^infty {a_j}^ix^i\
&=sum_{i=1}^n{1over 1-a_ix}\
&=sum_{i=1}^n {a_i}^0+{a_i}^1x^1+{a_i}^2x^2+...
end{aligned}
]
所以……这玩意儿该咋算啊……
我们设
[egin{aligned}
G(x)
&=sum_{i=1}^n{-a_iover 1-a_ix}\
&=sum_{i=1}^n-{a_i}^1-{a_i}^2x-{a_i}^3x^2-...\
end{aligned}
]
那么就有(A(x)=-xG(x)+n)
然而我还是不会算(G)啊……
那就继续推倒
[egin{aligned}
G(x)
&=sum_{i=1}^n{-a_iover 1-a_ix}\
&=sum_{i=1}^nln'left(1-a_ix
ight)\
&=ln'left(prod_{i=1}^n (1-a_ix)
ight)
end{aligned}
]
分治(NTT)就行啦
然后没有然后了
记得思路清晰一点
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
ll readll(){
R ll res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]=' ';
}
const int N=(1<<18)+5,P=1e9+7;const double Pi=acos(-1.0);
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
struct cp{
double x,y;
cp(R double xx=0,R double yy=0){x=xx,y=yy;}
inline cp operator +(const cp &b)const{return cp(x+b.x,y+b.y);}
inline cp operator -(const cp &b)const{return cp(x-b.x,y-b.y);}
inline cp operator *(const cp &b)const{return cp(x*b.x-y*b.y,x*b.y+y*b.x);}
}rt[2][N<<1];
int r[21][N],inv[N],fac[N],ifac[N],B[N],A[N],d,lim;
inline void init(R int len){lim=1,d=0;while(lim<len)lim<<=1,++d;}
void FFT(cp *A,int ty){
fp(i,0,lim-1)if(i<r[d][i])swap(A[i],A[r[d][i]]);
cp t;
for(R int mid=1;mid<lim;mid<<=1)
for(R int j=0;j<lim;j+=(mid<<1))
fp(k,0,mid-1)
A[j+k+mid]=A[j+k]-(t=A[j+k+mid]*rt[ty][mid+k]),
A[j+k]=A[j+k]+t;
if(!ty){
double k=1.0/lim;
fp(i,0,lim-1)A[i].x*=k;
}
}
void MTT(int *a,int *b,int len,int *c){
init(len<<1);
static cp A[N],B[N],C[N],D[N],F[N],G[N],H[N];
fp(i,0,len-1){
A[i].x=a[i]>>15,B[i].x=a[i]&32767,
C[i].x=b[i]>>15,D[i].x=b[i]&32767,
A[i].y=B[i].y=C[i].y=D[i].y=0;
}fp(i,len,lim-1)A[i]=B[i]=C[i]=D[i]=0;
FFT(A,1),FFT(B,1),FFT(C,1),FFT(D,1);
fp(i,0,lim-1)F[i]=A[i]*C[i],G[i]=A[i]*D[i]+B[i]*C[i],H[i]=B[i]*D[i];
FFT(F,0),FFT(G,0),FFT(H,0);
fp(i,0,lim-1)c[i]=(((ll)(F[i].x+0.5)%P<<30)+((ll)(G[i].x+0.5)<<15)+((ll)(H[i].x+0.5)))%P;
}
void Inv(int *a,int *b,int len){
if(len==1)return b[0]=ksm(a[0],P-2),void();
Inv(a,b,len>>1);
static int c[N],d[N];
MTT(a,b,len,c),MTT(b,c,len,d);
fp(i,0,len-1)b[i]=dec(add(b[i],b[i]),d[i]);
}
void Ln(int *a,int *b,int len){
static int A[N],B[N];
fp(i,1,len-1)A[i-1]=mul(a[i],i);A[len-1]=0;
Inv(a,B,len),MTT(A,B,len,A);
fp(i,1,len-1)b[i]=mul(A[i-1],inv[i]);b[0]=0;
}
void Pre(){
fp(d,1,18)fp(i,1,(1<<d)-1)r[d][i]=(r[d][i>>1]>>1)|((i&1)<<(d-1));
inv[0]=fac[0]=ifac[0]=inv[1]=fac[1]=ifac[1]=1;
fp(i,2,262144){
fac[i]=mul(fac[i-1],i),
inv[i]=mul(P-P/i,inv[P%i]),
ifac[i]=mul(ifac[i-1],inv[i]);
}
for(R int i=1;i<=262144;i<<=1)fp(k,0,i-1)
rt[1][i+k]=cp(cos(Pi*k/i),sin(Pi*k/i)),rt[0][i+k]=cp(cos(Pi*k/i),-sin(Pi*k/i));
fp(i,0,65535)A[i]=ifac[i+1];
Inv(A,B,1<<16);
fp(i,0,65535)B[i]=mul(B[i],fac[i]);
}
int D[21][N],a[N];
void solve(int d,int l,int r){
if(l==r)return D[d][0]=1,D[d][1]=P-a[l],void();
int mid=(l+r)>>1;
solve(d,l,mid),solve(d+1,mid+1,r);
init(max(mid-l+1,r-mid)+1);
int len=lim;
fp(i,mid-l+2,len-1)D[d][i]=0;
fp(i,r-mid+1,len-1)D[d+1][i]=0;
MTT(D[d],D[d+1],len,D[d]);
fp(i,r-l+2,(len<<1)-1)D[d][i]=0;
}
void calc(int *a,int *b,int n,int t){
static int A[N],B[N];
solve(1,1,n);
init(t+1);int len=lim;
fp(i,0,n)A[i]=D[1][i];
fp(i,n+1,len-1)A[i]=0;
Ln(A,B,len);
fp(i,1,len-1)B[i-1]=mul(B[i],i);B[len-1]=0;
b[0]=n;
fp(i,1,t)b[i]=mul(P-B[i-1],ifac[i]);
}
int ak[N],bk[N],bin[N],F[N],G[N],n,k,t;
void MAIN(){
bin[0]=1;fp(i,1,k+k)bin[i]=mul(bin[i-1],t);
int len=1;while(len<k+2)len<<=1;
fp(i,0,len-1)F[i]=mul(B[i],ifac[i]),G[i]=mul(bin[i],ifac[i]);
G[0]=0;
MTT(F,G,len,F);
ak[0]=t+1;
fp(i,1,k)ak[i]=add(bin[i],mul(fac[i],F[i+1])),ak[i]=mul(ak[i],ifac[i]);
calc(a,bk,n,k);
len=1;while(len<k)len<<=1;
fp(i,k+1,len-1)ak[i]=bk[i]=0;
MTT(ak,bk,len,ak);
fp(i,0,k)print(mul(ak[i],fac[i]));
}
int main(){
// freopen("testdata.in","r",stdin);
Pre();
n=read(),k=read(),t=readll()%P;
fp(i,1,n)a[i]=read();
MAIN();
return Ot(),0;
}