不难看出就是求(n)个小于(m)的质数异或和为(0)的方案数,可以用(FWT)+快速幂解决
(我的代码跑了4500ms……不是很明白那几位52ms的巨巨是怎么做到的……可能是我人傻常数大……也不至于这么大吧……)
//minamoto
#include<cstdio>
#include<cstring>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=(1<<16)+5,P=1e9+7,inv=500000004;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int vis[N],m,n,k;
void init(){
vis[1]=1;
fp(i,2,50000)if(!vis[i]){
for(R int j=(i<<1);j<=50000;j+=i)vis[j]=1;
}
}
int A[N],B[N],lim;
void FWT(int *A,int ty){
for(R int mid=1;mid<lim;mid<<=1)
for(R int j=0;j<lim;j+=(mid<<1))
for(R int k=0;k<mid;++k){
int x=A[j+k],y=A[j+k+mid];
A[j+k]=add(x,y),A[j+k+mid]=dec(x,y);
if(ty==-1)A[j+k]=mul(A[j+k],inv),A[j+k+mid]=mul(A[j+k+mid],inv);
}
}
void ksm(int *A,int *B,int y){
FWT(A,1),FWT(B,1);
while(y){
if(y&1)fp(i,0,lim-1)B[i]=mul(B[i],A[i]);
fp(i,0,lim-1)A[i]=mul(A[i],A[i]);
y>>=1;
}FWT(B,-1);
}
int main(){
// freopen("testdata.in","r",stdin);
init();
while(~scanf("%d%d",&n,&m)){
lim=1;while(lim<=m)lim<<=1;
memset(A,0,sizeof(A)),memset(B,0,sizeof(B));
fp(i,1,m)A[i]=B[i]=!vis[i];
ksm(A,B,n-1);printf("%d
",B[0]);
}return 0;
}