• Bystack跨链技术源码解读


    Bystack是由比原链团队提出的一主多侧链架构的BaaS平台。其将区块链应用分为三层架构:底层账本层,侧链扩展层,业务适配层。底层账本层为Layer1,即为目前比较成熟的采用POW共识的Bytom公链。侧链扩展层为Layer2,为多侧链层,vapor侧链即处于Layer2。

    (图片来自Bystack白皮书)

    Vapor侧链采用DPOS和BBFT共识,TPS可以达到数万。此处就分析一下连接Bytom主链和Vapor侧链的跨链模型。

    主侧链协同工作模型

    1、技术细节

    POW当前因为能源浪费而饱受诟病,而且POW本身在提高TPS的过程中遇到诸多问题,理论上可以把块变大,可以往块里面塞更多的交易。TPS是每秒出块数*块里面的交易数。但是也存在问题:小节点吃不消存储这么大的容量的内容,会慢慢变成中心化的模式,因为只有大财团和大机构才有财力去组建机房设备,成为能出块的节点。同时传输也存在问题,网络带宽是有限的,块的大小与网络传输的边际是有关的,不可能无限的去增加块的大小,网络边际上的人拿不到新块的信息,也会降低去中心化的程度,这就是为什么POW不能在提高可靠性的情况下,提高TPS的原因。

    而BFT虽然去中心化较弱,但其效率和吞吐量高,也不需要大量的共识计算,非常环保节能,很符合Bystack侧链高TPS的性能需求

    (1)跨链模型架构

    在Bystack的主侧链协同工作模型中,包括有主链、侧链和Federation。主链为bytom,采用基于对AI 计算友好型PoW(工作量证明)算法,主要负责价值锚定,价值传输和可信存证。侧链为Vapor,采用DPOS+BBFT共识,高TPS满足垂直领域业务。主链和侧链之间的资产流通主要依靠Federation。

    (2)节点类型

    跨链模型中的节点主要有收集人、验证人和联邦成员。收集人监控联邦地址,收集交易后生成Claim交易进行跨链。验证人则是侧链的出块人。联邦成员由侧链的用户投票通过选举产生,负责生成新的联邦合约地址。

    (3)跨链交易流程

    主链到侧链

    主链用户将代币发送至联邦合约地址,收集人监控联邦地址,发现跨链交易后生成Claim交易,发送至侧链

    侧链到主链

    侧链用户发起提现交易,销毁侧链资产。收集人监控侧链至主链交易,向主链地址发送对应数量资产。最后联邦在侧链生成一笔完成提现的操作交易。

    2、代码解析

    跨链代码主要处于federation文件夹下,这里就这部分代码进行一个介绍。

    (1)keeper启动

    整个跨链的关键在于同步主链和侧链的区块,并处理区块中的跨链交易。这部份代码主要在mainchain_keerper.go和sidechain_keerper.go两部分中,分别对应处理主链和侧链的区块。keeper在Run函数中启动。

    func (m *mainchainKeeper) Run() {
    	ticker := time.NewTicker(time.Duration(m.cfg.SyncSeconds) * time.Second)
    	for ; true; <-ticker.C {
    		for {
    			isUpdate, err := m.syncBlock()
    			if err != nil {
    				//..
    			}
    			if !isUpdate {
    				break
    			}
    		}
    	}
    }
    
    

    Run函数中首先生成一个定时的Ticker,规定每隔SyncSeconds秒同步一次区块,处理区块中的交易。

    (2)主侧链同步区块

    Run函数会调用syncBlock函数同步区块。

    func (m *mainchainKeeper) syncBlock() (bool, error) {
    	chain := &orm.Chain{Name: m.chainName}
    	if err := m.db.Where(chain).First(chain).Error; err != nil {
    		return false, errors.Wrap(err, "query chain")
    	}
    
    	height, err := m.node.GetBlockCount()
    	//..
    	if height <= chain.BlockHeight+m.cfg.Confirmations {
    		return false, nil
    	}
    
    	nextBlockStr, txStatus, err := m.node.GetBlockByHeight(chain.BlockHeight + 1)
    	//..
    	nextBlock := &types.Block{}
    	if err := nextBlock.UnmarshalText([]byte(nextBlockStr)); err != nil {
    		return false, errors.New("Unmarshal nextBlock")
    	}
    	if nextBlock.PreviousBlockHash.String() != chain.BlockHash {
    		//...
    		return false, ErrInconsistentDB
    	}
    
    	if err := m.tryAttachBlock(chain, nextBlock, txStatus); err != nil {
    		return false, err
    	}
    
    	return true, nil
    }
    

    这个函数受限会根据chainName从数据库中取出对应的chain。然后利用GetBlockCount函数获得chain的高度。然后进行一个伪确定性的检测。

    height <= chain.BlockHeight+m.cfg.Confirmations
    
    
    

    主要是为了判断链上的资产是否已经不可逆。这里Confirmations的值被设为10。如果不进行这个等待不可逆的过程,很可能主链资产跨链后,主链的最长链改变,导致这笔交易没有在主链被打包,而侧链却增加了相应的资产。在此之后,通过GetBlockByHeight函数获得chain的下一个区块。

    nextBlockStr, txStatus, err := m.node.GetBlockByHeight(chain.BlockHeight + 1)
    
    
    

    这里必须满足下个区块的上一个区块哈希等于当前chain中的这个头部区块哈希。这也符合区块链的定义。

    if nextBlock.PreviousBlockHash.String() != chain.BlockHash {
        //..
    }
    
    

    在此之后,通过调用tryAttachBlock函数进一步调用processBlock函数处理区块。

    (3)区块处理

    processBlock函数会判断区块中交易是否为跨链的deposit或者是withdraw,并分别调用对应的函数去进行处理。

    func (m *mainchainKeeper) processBlock(chain *orm.Chain, block *types.Block, txStatus *bc.TransactionStatus) error {
    	if err := m.processIssuing(block.Transactions); err != nil {
    		return err
    	}
    
    	for i, tx := range block.Transactions {
    		if m.isDepositTx(tx) {
    			if err := m.processDepositTx(chain, block, txStatus, uint64(i), tx); err != nil {
    				return err
    			}
    		}
    
    		if m.isWithdrawalTx(tx) {
    			if err := m.processWithdrawalTx(chain, block, uint64(i), tx); err != nil {
    				return err
    			}
    		}
    	}
    
    	return m.processChainInfo(chain, block)
    }
    

    在这的processIssuing函数,它内部会遍历所有交易输入Input的资产类型,也就是AssetID。当这个AssetID不存在的时候,则会去在系统中创建一个对应的资产类型。每个Asset对应的数据结构如下所示。

    m.assetStore.Add(&orm.Asset{
    AssetID:           assetID.String(),
    IssuanceProgram:   hex.EncodeToString(inp.IssuanceProgram),
    VMVersion:         inp.VMVersion,
    RawDefinitionByte: hex.EncodeToString(inp.AssetDefinition),
    })
    

    在processBlock函数中,还会判断区块中每笔交易是否为跨链交易。主要通过isDepositTx和isWithdrawalTx函数进行判断。

    func (m *mainchainKeeper) isDepositTx(tx *types.Tx) bool {
    	for _, output := range tx.Outputs {
    		if bytes.Equal(output.OutputCommitment.ControlProgram, m.fedProg) {
    			return true
    		}
    	}
    	return false
    }
    
    func (m *mainchainKeeper) isWithdrawalTx(tx *types.Tx) bool {
    	for _, input := range tx.Inputs {
    		if bytes.Equal(input.ControlProgram(), m.fedProg) {
    			return true
    		}
    	}
    	return false
    }
    

    看一下这两个函数,主要还是通过比较交易中的control program这个标识和mainchainKeeper这个结构体中的fedProg进行比较,如果相同则为跨链交易。fedProg在结构体中为一个字节数组。

    type mainchainKeeper struct {
    	cfg        *config.Chain
    	db         *gorm.DB
    	node       *service.Node
    	chainName  string
    	assetStore *database.AssetStore
    	fedProg    []byte
    }
    

    (4)跨链交易(主链到侧链的deposit)处理

    这部分主要分为主链到侧链的deposit和侧链到主链的withdraw。先看比较复杂的主链到侧链的deposit这部分代码的处理。

    func (m *mainchainKeeper) processDepositTx(chain *orm.Chain, block *types.Block, txStatus *bc.TransactionStatus, txIndex uint64, tx *types.Tx) error {
    	//..
    
    	rawTx, err := tx.MarshalText()
    	if err != nil {
    		return err
    	}
    
    	ormTx := &orm.CrossTransaction{
    	      //..
    	}
    	if err := m.db.Create(ormTx).Error; err != nil {
    		return errors.Wrap(err, fmt.Sprintf("create mainchain DepositTx %s", tx.ID.String()))
    	}
    
    	statusFail := txStatus.VerifyStatus[txIndex].StatusFail
    	crossChainInputs, err := m.getCrossChainReqs(ormTx.ID, tx, statusFail)
    	if err != nil {
    		return err
    	}
    
    	for _, input := range crossChainInputs {
    		if err := m.db.Create(input).Error; err != nil {
    			return errors.Wrap(err, fmt.Sprintf("create DepositFromMainchain input: txid(%s), pos(%d)", tx.ID.String(), input.SourcePos))
    		}
    	}
    
    	return nil
    }
    

    这里它创建了一个跨链交易orm。具体的结构如下。可以看到,这里它的结构体中包括有source和dest的字段。

    ormTx := &orm.CrossTransaction{
    		ChainID:              chain.ID,
    		SourceBlockHeight:    block.Height,
    		SourceBlockTimestamp: block.Timestamp,
    		SourceBlockHash:      blockHash.String(),
    		SourceTxIndex:        txIndex,
    		SourceMuxID:          muxID.String(),
    		SourceTxHash:         tx.ID.String(),
    		SourceRawTransaction: string(rawTx),
    		DestBlockHeight:      sql.NullInt64{Valid: false},
    		DestBlockTimestamp:   sql.NullInt64{Valid: false},
    		DestBlockHash:        sql.NullString{Valid: false},
    		DestTxIndex:          sql.NullInt64{Valid: false},
    		DestTxHash:           sql.NullString{Valid: false},
    		Status:               common.CrossTxPendingStatus,
    	}
    

    创建这笔跨链交易后,它会将交易存入数据库中。

    if err := m.db.Create(ormTx).Error; err != nil {
    		return errors.Wrap(err, fmt.Sprintf("create mainchain DepositTx %s", tx.ID.String()))
    }
    

    在此之后,这里会调用getCrossChainReqs。这个函数内部较为复杂,主要作用就是遍历交易的输出,返回一个跨链交易的请求数组。具体看下这个函数。

    func (m *mainchainKeeper) getCrossChainReqs(crossTransactionID uint64, tx *types.Tx, statusFail bool) ([]*orm.CrossTransactionReq, error) {
    	//..
    	switch {
    	case segwit.IsP2WPKHScript(prog):
    		//..
    	case segwit.IsP2WSHScript(prog):
    		//..
    	}
    
    	reqs := []*orm.CrossTransactionReq{}
    	for i, rawOutput := range tx.Outputs {
    		//..
    
    		req := &orm.CrossTransactionReq{
    			//..
    		}
    		reqs = append(reqs, req)
    	}
    	return reqs, nil
    }
    

    很显然,这个地方的交易类型有pay to public key hash 和 pay to script hash这两种。这里会根据不同的交易类型进行一个地址的获取。

    switch {
    	case segwit.IsP2WPKHScript(prog):
    		if pubHash, err := segwit.GetHashFromStandardProg(prog); err == nil {
    			fromAddress = wallet.BuildP2PKHAddress(pubHash, &vaporConsensus.MainNetParams)
    			toAddress = wallet.BuildP2PKHAddress(pubHash, &vaporConsensus.VaporNetParams)
    		}
    	case segwit.IsP2WSHScript(prog):
    		if scriptHash, err := segwit.GetHashFromStandardProg(prog); err == nil {
    			fromAddress = wallet.BuildP2SHAddress(scriptHash, &vaporConsensus.MainNetParams)
    			toAddress = wallet.BuildP2SHAddress(scriptHash, &vaporConsensus.VaporNetParams)
    		}
    	}
    

    在此之后,函数会遍历所有交易的输出,然后创建跨链交易请求,具体的结构如下。

    req := &orm.CrossTransactionReq{
       CrossTransactionID: crossTransactionID,
       SourcePos:          uint64(i),
       AssetID:            asset.ID,
       AssetAmount:        rawOutput.OutputCommitment.AssetAmount.Amount,
       Script:             script,
       FromAddress:        fromAddress,
       ToAddress:          toAddress,
       }
    

    创建完所有的跨链交易请求后,返回到processDepositTx中一个crossChainInputs数组中,并存入db。

    for _, input := range crossChainInputs {
    		if err := m.db.Create(input).Error; err != nil {
    			return errors.Wrap(err, fmt.Sprintf("create DepositFromMainchain input: txid(%s), pos(%d)", tx.ID.String(), input.SourcePos))
    		}
    }
    

    到这里,对主链到侧链的deposit已经处理完毕。

    (5)跨链交易(侧链到主链的withdraw)交易处理

    这部分比较复杂的逻辑主要在sidechain_keeper.go中的processWithdrawalTx函数中。这部分逻辑和上面主链到侧链的deposit逻辑类似。同样是创建了orm.crossTransaction结构体,唯一的改变就是交易的souce和dest相反。这里就不作具体描述了。

    3、跨链优缺点

    优点

    (1) 跨链模型、代码较为完整。当前有很多项目使用跨链技术,但是真正实现跨链的寥寥无几。

    (2) 可以根据不同需求实现侧链,满足多种场景

    缺点

    (1) 跨链速度较慢,需等待10个区块确认,这在目前Bytom网络上所需时间为30分钟左右

    (2) 相较于comos、polkadot等项目,开发者要开发侧链接入主网成本较大

    (3) 只支持资产跨链,不支持跨链智能合约调用

    **4、**跨链模型平行对比Cosmos

    可扩展性

    bystack的主测链协同工作模型依靠Federation,未形成通用协议。其他开发者想要接入其跨链网络难度较大。Cosmos采用ibc协议,可扩展性较强。

    代码开发进度

    vapor侧链已经能够实现跨链。Cosmos目前暂无成熟跨链项目出现,ibc协议处于最终开发阶段。

    跨链模型

    vapor为主侧链模型,Cosmos为Hub-Zone的中继链模型。

    5、参考建议

    侧链使用bbft共识,非POW的情况下,无需等待10个交易确认,增快跨链速度。

    作者:诗人

  • 相关阅读:
    flash
    应用缓存
    音频和视频
    拖拽借口
    地理定位接口
    表单元素
    jquery常见用法
    jquery ajax 模板
    Ubuntu下Lucene环境搭配
    小絮叨
  • 原文地址:https://www.cnblogs.com/bytom/p/11207416.html
Copyright © 2020-2023  润新知