• [leetcode] 62. Unique Paths


    题目大意

    https://leetcode.com/problems/unique-paths/description/

    62. Unique Paths

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

    How many possible unique paths are there?


    Above is a 7 x 3 grid. How many possible unique paths are there?

    Note: m and n will be at most 100.

    Example 1:

    Input: m = 3, n = 2
    Output: 3
    Explanation:
    From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
    1. Right -> Right -> Down
    2. Right -> Down -> Right
    3. Down -> Right -> Right

    Example 2:

    Input: m = 7, n = 3
    Output: 28

    一个机器人位于m x n隔板的左上角(在图中标记为“起点”)。

    机器人在任意一点只可以向下或者向右移动一步。机器人尝试到达隔板的右下角(图中标记为“终点”)

    有多少种可能的路径?

    注意:m和n最多为100

    解题思路

    思路一:动态规划

    状态转移方程:

    dp[x][y] = dp[x - 1][y] + dp[x][y - 1]

    初始令dp[0][0] = 1

    Python代码:

    class Solution(object):
        def uniquePaths(self, m, n):
            """
            :type m: int
            :type n: int
            :rtype: int
            """
            dp = [[0] * n for x in range(m)]
            dp[0][0] = 1
            for x in range(m):
                for y in range(n):
                    if x + 1 < m:
                        dp[x + 1][y] += dp[x][y]
                    if y + 1 < n:
                        dp[x][y + 1] += dp[x][y]
            return dp[m - 1][n - 1]

    上述解法空间复杂度可以优化至O(n):

    class Solution(object):
        def uniquePaths(self, m, n):
            """
            :type m: int
            :type n: int
            :rtype: int
            """
            if m < n:
                m, n = n, m
            dp = [0] * n
            dp[0] = 1
            for x in range(m):
                for y in range(n - 1):
                    dp[y + 1] += dp[y]
            return dp[n - 1]

    思路二:排列组合

    题目可以转化为下面的问题:

    求m - 1个白球,n - 1个黑球的排列方式

    公式为:

    公式为:C(m + n - 2, n - 1)

    Python代码:

    class Solution(object):
        def uniquePaths(self, m, n):
            """
            :type m: int
            :type n: int
            :rtype: int
            """
            if m < n:
                m, n = n, m
            mul = lambda x, y: reduce(operator.mul, range(x, y), 1)
            return mul(m, m + n - 1) / mul(1, n)

    参考:http://bookshadow.com/weblog/2015/10/11/leetcode-unique-paths/

  • 相关阅读:
    java异常笔记
    CORBA IOR学习
    CORBA GIOP消息格式学习
    一个简单的CORBA例子
    Chrome 调试动态加载的js
    Android高效加载大图、多图解决方案,有效避免程序OOM(转)
    安卓开发笔记——打造万能适配器(Adapter)
    安卓开发笔记——个性化TextView(新浪微博)
    安卓开发笔记——关于Handler的一些总结(上)
    安卓开发笔记——关于AsyncTask的使用
  • 原文地址:https://www.cnblogs.com/bymo/p/9635419.html
Copyright © 2020-2023  润新知