题目描述
同一时刻有N位车主带着他们的爱车来到了汽车维修中心。维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的。现在需要安排这M位技术人员所维修的车及顺序,使得顾客平均等待的时间最小。
说明:顾客的等待时间是指从他把车送至维修中心到维修完毕所用的时间。
输入输出格式
输入格式:
第一行有两个数M,N,表示技术人员数与顾客数。
接下来n行,每行m个整数。第i+1行第j个数表示第j位技术人员维修第i辆车需要用的时间T。
输出格式:
最小平均等待时间,答案精确到小数点后2位。
输入输出样例
输入样例#1: 复制
2 2 3 2 1 4
输出样例#1: 复制
View Code
1.50
*k表示有人在等待耗费的时间
#include<bits/stdc++.h> using namespace std; //input by bxd #define rep(i,a,b) for(int i=(a);i<=(b);i++) #define repp(i,a,b) for(int i=(a);i>=(b);--i) #define RI(n) scanf("%d",&(n)) #define RII(n,m) scanf("%d%d",&n,&m) #define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k) #define RS(s) scanf("%s",s); #define ll long long #define pb push_back #define inf 0x3f3f3f3f #define CLR(A,v) memset(A,v,sizeof A) ////////////////////////////////// const int N=100001; int n,m,S,T,k,maxflow,mincost,last[N],pre[N],dis[N],flow[N]; bool vis[N]; struct Edge{ int next,to,flow,dis; }edge[N<<1]; int pos=1,head[N]; void init() { pos=1; CLR(head,0); mincost=maxflow=0; } queue <int> q; void add(int from,int to,int flow,int dis)//flow流量 dis费用 { edge[++pos].next=head[from]; edge[pos].flow=flow; edge[pos].dis=dis; edge[pos].to=to; head[from]=pos; edge[++pos].next=head[to]; edge[pos].flow=0; edge[pos].dis=-dis; edge[pos].to=from; head[to]=pos; } bool spfa(int s,int t) { CLR(dis,0x3f); CLR(flow,0x3f); CLR(vis,0); while (!q.empty()) q.pop(); dis[s]=0; pre[t]=-1; q.push(s); vis[s]=1; int tot=0; while (!q.empty()) { int now=q.front(); q.pop(); vis[now]=0; for (int i=head[now]; i; i=edge[i].next) { int to=edge[i].to; if (edge[i].flow>0 && dis[to]>dis[now]+edge[i].dis) { dis[to]=edge[i].dis+dis[now]; flow[to]=min(edge[i].flow,flow[now]); last[to]=i; pre[to]=now; if (!vis[to]) { q.push(to); vis[to]=1; } } } } return pre[t]!=-1; } void MCMF(int s,int t) { while (spfa(s,t)) { int now=t; maxflow+=flow[t]; mincost+=flow[t]*dis[t]; while (now!=s) { edge[last[now]].flow-=flow[t];//dis . flow edge[last[now]^1].flow+=flow[t]; now=pre[now]; } } } int id(int x,int y) { return (x-1)*n+y; } int main() { init(); RII(m,n); int s=0,t=(m*n)+n+1; int T=n*m; rep(i,1,n) rep(j,1,m) { int x;RI(x); rep(k,1,n) add(i+T,id(j,k),1,k*x); } rep(i,1,n) add(s,i+T,1,0); rep(i,1,T) add(i,t,1,0); MCMF(s,t); printf("%.2lf",1.0*mincost/n); return 0; }