有N头牛,B个牛棚.告诉你每头牛心里牛棚的座次,即哪个牛棚他最喜欢,哪个第2喜欢, 哪个第3喜欢,等等.但牛棚容量一定,所以每头牛分配到的牛棚在该牛心中的座次有高有低.现 在求一种最公平的方法分配牛到牛棚,使所有牛中,所居牛棚的座次最高与最低的跨度最小.
枚举最大和最小的座次 然后连图看看能不能行
#include<bits/stdc++.h> using namespace std; //input by bxd #define rep(i,a,b) for(int i=(a);i<=(b);i++) #define repp(i,a,b) for(int i=(a);i>=(b);--i) #define RI(n) scanf("%d",&(n)) #define RII(n,m) scanf("%d%d",&n,&m) #define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k) #define RS(s) scanf("%s",s); #define ll long long #define pb push_back #define REP(i,N) for(int i=0;i<(N);i++) #define CLR(A,v) memset(A,v,sizeof A) ////////////////////////////////// #define inf 0x3f3f3f3f const int N=4e5+44; const int M=4e6+54; struct edge { int to, next, w; } e[M << 1]; int head[N], cnt = 1; void add(int x, int y, int z) { e[++cnt] = (edge){y, head[x], z}; head[x] = cnt; e[++cnt] = (edge){x, head[y], 0}; head[y] = cnt; } int level[N]; bool bfs(int s, int t) { memset(level, 0, sizeof level); queue<int> q; level[s] = 1; q.push(s); while (!q.empty()) { int pos = q.front(); q.pop(); for (int i = head[pos]; i; i = e[i].next) { int nx = e[i].to; if (!e[i].w || level[nx]) continue; level[nx] = level[pos] + 1; q.push(nx); } } return level[t]; } int dfs(int s, int t, int flow) { if (s == t) return flow; int ret = 0; for (int i = head[s]; flow && i; i = e[i].next) { int nx = e[i].to; if (level[nx] == level[s] + 1 && e[i].w) { int tmp = dfs(nx, t, min(flow, e[i].w)); e[i].w -= tmp; e[i ^ 1].w += tmp; flow -= tmp; ret += tmp; } } if (!ret) level[s] = 0; return ret; } int dinic(int s, int t) { int ret = 0; while (bfs(s, t)) ret += dfs(s, t, inf); return ret; } int n,m,s,t; void init() { CLR(head,0);cnt=1; } int a[1000+5][30]; int num[N]; void build(int x,int y) { init(); rep(i,1,m) add(s,i,num[i]); rep(i,1,n) rep(j,x,y) { add(a[i][j],i+m,1); } rep(i,1,n) add(i+m,t,1); } int main() { RII(n,m); rep(i,1,n)rep(j,1,m)RI(a[i][j]); rep(i,1,m) RI(num[i]); s=n+m+1;t=s+1; int ans=inf; rep(i,0,m) rep(j,1,m) { int e=j+i;if(e>m)continue; build(j,e); if(dinic(s,t)==n) {ans=min(ans,e-j+1);break;} } cout<<ans; return 0; }