• LOJ 2664. 「NOI2013」向量内积 解题报告


    #2664. 「NOI2013」向量内积

    两个 (d) 维向量 (A=[a_1, a_2 ,...,a_d])(B=[b_1 ,b_2 ,...,b_d]) 的内积为其相对应维度的权值的乘积和,即:

    [(A,B) = displaystyle sum_{i=1}^d{a_ib_i} = a_1b_1 + a_2b_2 + ldots + a_db_d ]

    现有 (n)(d) 维向量 (x_1, ldots, x_n),小喵喵想知道是否存在两个向量的内积为 (k) 的倍数。请帮助她解决这个问题。


    输入格式

    第一行包含 (3) 个正整数 (n,d,k),分别表示向量的个数、维数以及待检测的倍数。

    接下来 (n) 行每行有 (d) 个非负整数,其中第 (i) 行的第 (j) 个整数表示向量 ([x_i]) 的第 (j) 维权值 (x_{i,j})

    输出格式

    包含两个整数,用空格隔开。

    如果存在两个向量 (x_p,x_q) 的内积为 (k) 的整数倍,则输出两个向量的编号 (p)(q)(要求 (p<q))。如果存在多组这样的向量组合,输出其中任意一组即可。

    若不存在这样的向量组合,则输出两个 (−1)


    数据范围与提示

    测试点编号 n d k (x_i)
    (1) (2) (20) (2) (le 10)
    (2) (5) (20) (2) (le 10)
    (3) (10) (20) (3) (le 10)
    (4) (20) (20) (2) (le 100)
    (5) (50) (20) (3) (le 100)
    (6) (50) (50) (2) (le 1000)
    (7) (50) (50) (3) (le 3000000)
    (8) (80) (80) (2) (le 2000000)
    (9) (100) (100) (3) (le 3000000)
    (10) (500) (100) (3) (le 3000000)
    (11) (1000) (100) (2) (le 2000000)
    (12) (1000) (100) (3) (le 3000000)
    (13) (10000) (100) (2) (< 10)
    (14) (10000) (100) (3) (< 10)
    (15) (15000) (100) (2) (< 10)
    (16) (18000) (100) (2) (< 10)
    (17) (20000) (100) (2) (< 10)
    (18) (50000) (30) (3) (< 10)
    (19) (80000) (30) (3) (< 10)
    (20) (100000) (30) (3) (< 10)

    向量点乘的过程有点像一个行向量和一个列向量相乘,然后我们把原始向量排成一个矩阵(A),然后令(D=A*A^T)

    那么(D_{i,j})就代表向量(i)和向量(j)做内积。

    突破口在(mod 2)上。

    现在矩阵所有元素在(mod 2)

    我们设一个(n imes n)的全(1)矩阵(E),然后通过一些随机化的方法比较(D)(E)有哪里不相等。

    我们可以随机几个(1 imes n)的向量(C),然后判断是否有

    [C imes A imes A^Tequiv C imes Epmod 2 ]

    并且我们可以判断出哪一行不相等,然后可以暴力枚举与之匹配的另一个。

    或者随机一下原始向量的排列顺序。

    至于为什么随机次数是常数次,可以从Hash的角度感性理解

    然后(mod 3)也差不多

    注意到(2^2equiv 1pmod 3,1^2equiv 1pmod 3),我们把矩阵(D'_{i,j}=D^2_{i,j})搞出来就可以了

    把这个式子拆开可以发现我们需要把组成(A)的每一个向量搞出(1 imes d^2)的,即(A'_{i,(j-1)d+k}=A_{i,j}*A_{i,k})

    然后和(2)是一样的


    Code:

    #include <cstdio>
    #include <cstring>
    #include <cctype>
    #include <cstdlib>
    #include <algorithm>
    int read()
    {
    	int x=0;char c=getchar();
    	while(!isdigit(c)) c=getchar();
    	while(isdigit(c)) x=x*10+c-'0',c=getchar();
    	return x;
    }
    int n,d,k;
    namespace beecute
    {
    	int yuy[20010][110],bee[110],dew[20010],c[20010];
    	void work()
    	{
    		for(int i=1;i<=n;i++)
    			for(int j=1;j<=d;j++)
    				yuy[i][j]=read()&1;
    		int Dew=5;
    		while(Dew--)
    		{
    		    memset(dew,0,sizeof dew);
    		    memset(bee,0,sizeof bee);
    			for(int i=1;i<=n;i++) c[i]=rand()&1;
    			for(int i=1;i<=d;i++)
                    for(int j=1;j<=n;j++)
                        if(c[j])
                            bee[i]=bee[i]+yuy[j][i]&1;
    			for(int i=1;i<=n;i++)
    				for(int j=1;j<=d;j++)
    					dew[i]=(dew[i]+bee[j]*yuy[i][j])&1;
    			for(int i=1;i<=n;i++)
    				if(dew[i]!=c[i])
    				{
    					for(int j=1;j<=n;j++)
    					{
    						int sum=0;
    						for(int k=1;k<=d;k++)
    							sum=(sum+yuy[i][k]*yuy[j][k])&1;
    						if(!sum)
    						{
    							if(i<j) printf("%d %d
    ",i,j);
    							else printf("%d %d
    ",j,i);
    							return;
    						}
    					}
    				}
    		}
    		puts("-1");
    	}
    }
    namespace beelovely
    {
    	int yuy[100010][101],bee[10010],dew[100010],c[100010];
    	void work()
    	{
    		for(int i=1;i<=n;i++)
    			for(int j=1;j<=d;j++)
    				yuy[i][j]=read()%3;
    		for(int i=1;i<=d;i++)
    			for(int j=1;j<=d;j++)
    				for(int k=1;k<=n;k++)
    					(bee[(i-1)*d+j]+=yuy[k][i]*yuy[k][j])%=3;
    		int Dew=5;
    		while(Dew--)
    		{
    			memset(dew,0,sizeof dew);
    		    memset(bee,0,sizeof bee);
    			for(int i=1;i<=n;i++) c[i]=rand();
    			for(int i=1;i<=d;i++)
                    for(int k=1;k<=n;k++)
                        if(c[k])
                            bee[i]=(bee[i]+yuy[k][i]*yuy[k][j])%3;
    			for(int i=1;i<=n;i++)
    				for(int j=1;j<=d;j++)
    					for(int k=1;k<=d;k++)
    						dew[i]=(dew[i]+bee[(j-1)*d+k]*yuy[p[i]][j]*yuy[p[i]][k])%3;
    			for(int i=1;i<=n;i++)
    				if(dew[i]!=c[i])
    				{
    					for(int j=1;j<=n;j++)
    					{
    						int sum=0;
    						for(int k=1;k<=d;k++)
    							sum=(sum+yuy[i][k]*yuy[j][k])&1;
    						if(!sum)
    						{
    							if(i<j) printf("%d %d
    ",i,j);
    							else printf("%d %d
    ",j,i);
    							return;
    						}
    					}
    				}
    		}
    		puts("-1");
    	}
    }
    int main()
    {
    	n=read(),d=read(),k=read();
    	if(k==2) beecute::work();
    	else beelovely::work();
    	return 0;
    }
    

    2019.2.11

  • 相关阅读:
    [转]项目管理---敏捷开发思想---带来相当愉快的项目开发过程
    [转] 项目管理---项目经理如何应对客户的需求变更?
    [转]C# 线程知识--使用Task执行异步操作
    [转]细说ASP.NET的各种异步操作
    [转]oracle表分区详解
    解决Asp.net 部署后弹出登陆框
    SVN客户端TortoiseSVN安装配置图文教程
    .net版本区别及发展历程
    CLR via c#读书笔记九:字符、字符串和文本处理
    CLR via c#读书笔记九:接口
  • 原文地址:https://www.cnblogs.com/butterflydew/p/10362803.html
Copyright © 2020-2023  润新知