• Problem A: 种树 解题报告


    Problem A: 种树

    Description

    很久很久以前,一个蒟蒻种了一棵会提问的树,树有(n)个节点,每个节点有一个权值,现在树给出(m)组询问,每次询问两个值:树上一组点对((x,y))简单路径上不同权值的数量以及权值的(max)为多少

    然而某一天毒瘤胖子过来给树浇了点水,询问变成了每次求,一组点对((x,y))简单路径上的不同权值的数量以及权值的(mex)

    然而又过了两天毒瘤袁稳稳也过来给树浇了点水,询问变成了每次求若干组点对((x,y))简单路径的并集上的不同权值的数量以及权值的(mex)(如有疑惑见(HINT)

    然后蒟蒻就菜哭在树下了qwq并且毫不负责任地把这个问题丢给了刚好路过的你

    因为这棵树受到了两个毒瘤的祝福,每次询问受到了加密,记(lastans)表示上一次询问的两个答案的和,这次询问中的读入的表示点对的两个数都要(xor (lastans∗op)),其中(opin {0,1}),具体见数据范围

    后话:然而毕竟是蒟蒻种的树,毒瘤的祝福并没有使这题送温暖的本质发生变化qwq

    Input

    第一行三个整数(n,m,op)

    接下来一行(n)个整数表示每个节点的权值(val_i)

    再接下来(n−1)行每行两个整数(x,y)表示树上的一条边

    再接下来(m)组询问,每组询问第一行一个整数(num)表示点对的数量,接下来(num)行每行两个整数((x,y))表示一组点对

    Output

    对于每组询问,输出一行两个整数分别表示不同权值的数量以及权值的(mex)

    Sample Input

    5 5 0
    2 0 0 1 3 
    1 2
    2 3
    2 4
    4 5
    1 4 5 
    3 1 5 5 2 4 4 
    2 2 4 2 4 
    4 2 5 3 1 4 3 2 5 
    1 2 5 
    

    Sample Output

    2 0
    4 4
    2 2
    4 4
    3 2
    

    HINT

    一些你可能根本不需要用到的说明:一个数集(S)(mex)为最小的满足(x otin S)的非负整数(x)

    (subtask1(20\%))(n,m≤1000,sum num≤1000,op=0)

    (subtask2(30\%))(n,m≤10^5,sum num≤10^5),树是一条链,(op=0)

    (subtask3(50\%))(n,m≤10^5,sum num≤10^5,0≤val_i≤30000)


    完 全 没 有 感 受 到 温 暖,虽 然 确 实 是 最 简 单 的 一 道,剩 下 两 道 我 改 不 出 来

    30000这个数我们很容易除上个64哎

    然后随便用树剖倍增之类的维护一下,发现单次操作复杂度达到了惊人的(log nfrac{val}{64}),显然没救了。

    这时候就是分块出场的时候辣

    因为询问的是链的信息,所以我们考虑对树的深度进行分块,既对树提取一定的关键点,相邻的关键点深度差不超过(sqrt n)就可以了,这样我们就有了(sqrt n)个关键点。

    然后我们拿关键点拼吗?复杂度达到了更惊人的(sqrt n frac{val}{64})

    所以考虑先预处理在同一条到跟路径上关键点的路径信息,这里采用手写(bitset)的方法就可以做到(O(1))整数与上(bitset)了,然后每个关键点向上与顺便更新一下就行了。

    查询的时候,不完整的暴力跳,完整的做一次bitset之间的与运算就行了。

    复杂度:(O(nsqrt n+q(sqrt n+frac{val}{64})))


    Code:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #define ull unsigned long long
    const int N=1e5+10,B=470;
    const ull full=~0ull,cut=(1ull<<16)-1;
    int ct[cut+1],n,m,op;
    int cal(ull x){return ct[x&cut]+ct[x>>16&cut]+ct[x>>32&cut]+ct[x>>48&cut];}
    using std::max;
    struct Bitset
    {
        ull dx[B];
        int len;
        void clear(){memset(dx,0,sizeof(dx)),len=0;}
        Bitset(){clear();}
        void friend operator |=(Bitset &A,int x){A.dx[x>>6]|=1ull<<(x&63);A.len=max(A.len,x>>6);}
        void friend operator |=(Bitset &A,Bitset B)
        {
            A.len=A.len>B.len?A.len:B.len;
            for(int i=0;i<=A.len;i++) A.dx[i]|=B.dx[i];
        }
        int count()
        {
            int ret=0;
            for(int i=0;i<=len;i++)
                ret+=cal(dx[i]);
            return ret;
        }
        int mex()
        {
            for(int i=0;i<=len;i++)
            {
                if(dx[i]==full) continue;
                for(int j=0;j<64;j++)
                    if(!(dx[i]>>j&1))
                        return (i<<6)+j;
            }
            return 233;
        }
    }path[320][320],ans;
    int head[N],to[N<<1],Next[N<<1],cnt;
    void add(int u,int v)
    {
        to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
    }
    int f[N][19],dep[N],mxdep[N],id[N],rt[N],val[N],pre[N],H;
    void dfs(int now)
    {
        for(int i=1;f[now][i-1];i++) f[now][i]=f[f[now][i-1]][i-1];
        dep[now]=dep[f[now][0]]+1;
        mxdep[now]=1;
        for(int v,i=head[now];i;i=Next[i])
            if((v=to[i])!=f[now][0])
            {
                f[v][0]=now;
                dfs(v);
                mxdep[now]=max(mxdep[now],mxdep[v]+1);
            }
        if(mxdep[now]==H||now==1)
        {
            rt[id[now]=++rt[0]]=now;
            mxdep[now]=0;
        }
    }
    int LCA(int x,int y)
    {
        if(dep[x]<dep[y]) return LCA(y,x);
        for(int i=18;~i;i--)
            if(dep[f[x][i]]>=dep[y])
                x=f[x][i];
        if(x==y) return x;
        for(int i=18;~i;i--)
            if(f[x][i]!=f[y][i])
                x=f[x][i],y=f[y][i];
        return f[x][0];
    }
    void query(int x,int y)
    {
        while(!id[x]&&x!=y) ans|=val[x],x=f[x][0];
        if(x==y) {ans|=val[x];return;}
        int s=x;
        while(dep[pre[x]]>dep[y]) x=pre[x];
        ans|=path[id[s]][id[x]];
        while(dep[f[x][0]]>=dep[y]) x=f[x][0],ans|=val[x];
    }
    void Query(int x,int y)
    {
        int lca=LCA(x,y);
        query(x,lca);
        query(y,lca);
    }
    int main()
    {
        scanf("%d%d%d",&n,&m,&op);
        for(int i=1;i<=cut;i++) ct[i]=ct[i>>1]+(i&1);
        H=sqrt(n)+1;
        for(int i=1;i<=n;i++) scanf("%d",val+i);
        for(int u,v,i=1;i<n;i++) scanf("%d%d",&u,&v),add(u,v),add(v,u);
        dfs(1);
        for(int i=1;i<=rt[0];i++)
        {
            Bitset tmp;
            tmp|=val[rt[i]];
            path[i][i]=tmp;
            for(int now=f[rt[i]][0];now;now=f[now][0])
            {
                tmp|=val[now];
                if(id[now])
                {
                    path[i][id[now]]=tmp;
                    if(!pre[rt[i]]) pre[rt[i]]=now;
                }
            }
        }
        for(int lastans=0,num,x,y,i=1;i<=m;i++)
        {
            scanf("%d",&num);
            ans.clear();
            for(int j=1;j<=num;j++)
            {
                scanf("%d%d",&x,&y);
                x^=lastans*op,y^=lastans*op;
                Query(x,y);
            }
            int t1=ans.count(),t2=ans.mex();
            lastans=t1+t2;
            printf("%d %d
    ",t1,t2);
        }
        return 0;
    }
    

    2019.1.6

  • 相关阅读:
    Go微服务全链路跟踪详解
    让Windows加入域的PowerShell
    关掉Windows Firewall的PowerShell
    修改IP地址的PowerShell
    如何得知当前机器上安装的PowerShell是什么版本的?
    如何在Vblock里配置Boot from SAN
    使用MDS Switch基本命令的一个例子
    [转贴]SSL工作原理
    [转贴] 数字证书及 CA 的扫盲介绍
    什么是Copy-Only Backup? 为什么要用它?
  • 原文地址:https://www.cnblogs.com/butterflydew/p/10229984.html
Copyright © 2020-2023  润新知