• 72. Edit Distance


    72. Edit Distance

    0. 参考文献

    序号 文献
    1 LeetCode 72. Edit Distance 最短字符串编辑距离 动态规划

    1.题目

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

    You have the following 3 operations permitted on a word:

    1. Insert a character
    2. Delete a character
    3. Replace a character

    Example 1:

    Input: word1 = "horse", word2 = "ros"
    Output: 3
    Explanation: 
    horse -> rorse (replace 'h' with 'r')
    rorse -> rose (remove 'r')
    rose -> ros (remove 'e')
    

    Example 2:

    Input: word1 = "intention", word2 = "execution"
    Output: 5
    Explanation: 
    intention -> inention (remove 't')
    inention -> enention (replace 'i' with 'e')
    enention -> exention (replace 'n' with 'x')
    exention -> exection (replace 'n' with 'c')
    exection -> execution (insert 'u')
    

    2. 思路

    这道题是求解字符串word1 通过替换,删除,插入最小几步可以变成word2。本题也可以通过动态规划的方式解决。设dp[i] [j] 是到word1的0 - i个字符通过替换,删除,插入等步骤可以变成Word2的0 - j 个字符的步骤数。则dp[i] [j] 的递推式有:

    1. 如果word1[ i - 1 ] 和word2[ j - 1 ] 相同,(注意这里dp矩阵是从空字符开始,所以i-1是j -1 是真实的字符index),则当前的字符不用替换,那么dp[i] [j] 的值就是dp[i-1] [j-1] 的值。

    2. 如果word1[ i - 1 ] 和word2[ j - 1 ] 不相同,那么要word1[ 0 - i ] 到word2[ 0 - j ]的方法有3种:删除,替换,插入。则当前的值是这3个方法中的最小值:
      2.1 删除对应的是dp[ i - 1 ] [ j ] + 1,既word1[ 0 - i -1 ]已经能匹配 word2[ 0 - j ]了,所以删除当前字符。
      2.2 插入对应的是dp[ i ] [ j - 1 ] + 1 ,既word1[ 0 - i ] 已经能匹配wrod2[ 0 - j -1 ]了,当前必须在插入一个和word2[j]一样的字符来转换。
      2.3 替换对应的是dp[ i - 1 ] [ j - 1 ] +1 ,既word1[ 0 - i -1 ]能匹配word2[ 0 - j -1 ]了,当前的word1[ i ] 和word2[ j ]不一样,必须替换。

    同时必须初始化下第0行和第0列 ,(注意dp的0行和0列分别代表了2个空字符串):

    for i in range(1,row) :
      dp[i][0] = i
    
    for j in range(1,col):
      dp[0][j] = j
    

    3. 实现

    class Solution(object):
        def minDistance(self, word1, word2):
            """
            :type word1: str
            :type word2: str
            :rtype: int
            """
            
            row = len(word1) + 1
            col = len(word2) + 1
            dp = [ [ 0 for j in range(col) ] for i in range(row) ]
    
            if len(word1) == 0 :
                return len(word2)
            if len(word2) == 0 :
                return len(word1)
    
            dp[0][0] = 0
    
            for i in range(1,row) :
                dp[i][0] = i
    
            for j in range(1,col):
                dp[0][j] = j
    
            for i in range(1,row):
                for j in range(1,col):
                    if word1[i-1] == word2[j-1]:
                        dp[i][j] = dp[i-1][j-1]
                    else:
                        dp[i][j] = min(dp[i-1][j-1] + 1, dp[i-1][j] + 1);
                        dp[i][j] = min(dp[i][j-1] + 1, dp[i][j])
          
            return dp[row-1][col-1]
    
  • 相关阅读:
    Blender基础操作
    反汇编及linux下edb的下载
    混淆矩阵(confusion_matrix)含义
    Python大数据第三次的作业
    Python的DataFrame基础使用
    Python数据标准化
    爬虫之xpath
    luffy项目上线
    爬虫之selenium
    celery
  • 原文地址:https://www.cnblogs.com/bush2582/p/10926690.html
Copyright © 2020-2023  润新知