• HashMap源码解析


    1、存储结构

    static class Node<K,V> implements Map.Entry<K,V> {
            final int hash;
            final K key;
            V value;
            Node<K,V> next;
    
            Node(int hash, K key, V value, Node<K,V> next) {
                this.hash = hash;
                this.key = key;
                this.value = value;
                this.next = next;
            }
    }

    2、属性

       //默认容量,1向左移位4个,00000001变成00010000,也就是2的4次方为16
        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
        //最大容量,2的30次方。
        static final int MAXIMUM_CAPACITY = 1 << 30;
        //加载因子,默认0.75,扩容会用到。
        static final float DEFAULT_LOAD_FACTOR = 0.75f;
        //当某个桶节点数量大于8时,会转换为红黑树。
        static final int TREEIFY_THRESHOLD = 8;
        //当某个桶节点数量小于6时,会转换为链表,前提是它当前是红黑树结构。
        static final int UNTREEIFY_THRESHOLD = 6;
        //当整个hashMap中元素数量大于64时,也会进行转为红黑树结构。
        static final int MIN_TREEIFY_CAPACITY = 64;
        //存储元素的数组,transient关键字表示该属性不能被序列化
        transient Node<K,V>[] table;
        //将数据转换成set的另一种存储形式,这个变量主要用于迭代功能。
        transient Set<Map.Entry<K,V>> entrySet;
        //数组中存储K,V对的数量
        transient int size;//临界值,也就是元素数量达到临界值时,会进行扩容。
        int threshold;
        //也是加载因子,只不过这个是变量。
        final float loadFactor; 

    3、构造方法

        //无参构造方法
        public HashMap() {
         //初始化加载因子为默认值(0.75)
            this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
        }
        public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
        public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
            this.loadFactor = loadFactor;
            this.threshold = tableSizeFor(initialCapacity);
        }
        //该方法会返回大于cap值的,且离其最近的2次幂,例如t为29,则返回的值是32
        static final int tableSizeFor(int cap) {
            int n = cap - 1;
            n |= n >>> 1;
            n |= n >>> 2;
            n |= n >>> 4;
            n |= n >>> 8;
            n |= n >>> 16;
            return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
        }

    4、添加(修改)

        //获取key的hashCode
        static final int hash(Object key) {
            int h;
            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
        }
      public V put(K key, V value) {
            return putVal(hash(key), key, value, false, true);
        }
        final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
         //tab 哈希数组,p 其中某一个哈希桶的首结点,n 表示哈希数组的长度, i 计算出来的数组下标
            Node<K,V>[] tab; Node<K,V> p; int n, i;
         //引用哈希数组,获取其长度,如果table一开始没有进行加载的话(需要第一次put操作才能进行加载),或者哈希数组的长度为0,则进行扩容
            if ((tab = table) == null || (n = tab.length) == 0)
                n = (tab = resize()).length;
         //如果计算出来的哈希桶的首结点没有值的话,则直接插入新结点key-value放到此处
            if ((p = tab[i = (n - 1) & hash]) == null)
                tab[i] = newNode(hash, key, value, null);
            else {
           //下面是发生hash冲突的几种情况  
           //e 表示临时结点的作用,k 表示存放当前结点的key值
                Node<K,V> e; K k;
           //第一种,首节点的情况(p当前表示首结点,还没有移动过),如果key和value都相等,说明找到了
           //value的两种比较,第一个表示值得对比,第二个表示对象的对比(前提是不能为null)
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    e = p;
           //第二种,判断是否属于红黑树的结点
                else if (p instanceof TreeNode)
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
           //第三种,链表中的结点
                else {
              //遍历该链表,进行查询
                    for (int binCount = 0; ; ++binCount) {
                //如果遍历到了链表尾部,说明链表中并没有重复的key-value,则直接在尾部添加新结点
                        if ((e = p.next) == null) {
                            p.next = newNode(hash, key, value, null);
                   //判断该链表的个数是否大于8,如果是,则转换为红黑树
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                treeifyBin(tab, hash);
                            break;
                        }
                //此处说明链表有重复的key值
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            break;
                        p = e;
                    }
                }
            //结合上面所说,有重复的key值,则进行覆盖操作
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            ++modCount;
         //元素个数加一,如果判断结果大于临界值,则进行扩容
            if (++size > threshold)
                resize();
            afterNodeInsertion(evict);
            return null;
        }

     扩容:

        final Node<K,V>[] resize() {
         //指向没扩容之前的哈希数组
            Node<K,V>[] oldTab = table;
         //获取没扩容之前哈希数组的长度
            int oldCap = (oldTab == null) ? 0 : oldTab.length;
         //获取没扩容之前哈希数组的临界值
            int oldThr = threshold;
         //初始化新哈希数组的长度和临界值
            int newCap, newThr = 0;
         //如果oldCap>0的话,说明不是首次进行初始化
            if (oldCap > 0) {
           //如果oldCap大于哈希数组定义的最大容量,则将其修改成int型的最大容量
                if (oldCap >= MAXIMUM_CAPACITY) {
                    threshold = Integer.MAX_VALUE;
                    return oldTab;
                }
           //标记##,扩容两倍,并且扩容之后的长度要小于默认容量最大值,oldCap要大于默认容量最小值
                else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                         oldCap >= DEFAULT_INITIAL_CAPACITY)
                    newThr = oldThr << 1; // double threshold
            }
         //如果前面没进行,到了此处,说明了一点,因为oldCap<=0,且oldThr>0,所以该哈希数组已经初始化过了,只是其中没有元素而已
            else if (oldThr > 0) // initial capacity was placed in threshold
                newCap = oldThr;
         //最后呢,此处就表示首次初始化了
            else {               // zero initial threshold signifies using defaults
           //初始化默认容量大小16
                newCap = DEFAULT_INITIAL_CAPACITY;
           //初始化临界值,  临界值 = 容量 * 加载因子
                newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
            }
         //此处对上面标记##的补充,就是当oldCap>0时,oldCap扩大两倍不在默认的容量范围内(16 < x < 230)
            if (newThr == 0) {
                float ft = (float)newCap * loadFactor;
                newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                          (int)ft : Integer.MAX_VALUE);
            }
            threshold = newThr;
            @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
            table = newTab;
         //把以前的哈希数组放到新的哈希数组中
            if (oldTab != null) {
                for (int j = 0; j < oldCap; ++j) {
                    Node<K,V> e;
                    if ((e = oldTab[j]) != null) {
                        oldTab[j] = null;
                        if (e.next == null)
                            newTab[e.hash & (newCap - 1)] = e;
                        else if (e instanceof TreeNode)
                            ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                        else { // preserve order
                            Node<K,V> loHead = null, loTail = null;
                            Node<K,V> hiHead = null, hiTail = null;
                            Node<K,V> next;
                            do {
                                next = e.next;
                                if ((e.hash & oldCap) == 0) {
                                    if (loTail == null)
                                        loHead = e;
                                    else
                                        loTail.next = e;
                                    loTail = e;
                                }
                                else {
                                    if (hiTail == null)
                                        hiHead = e;
                                    else
                                        hiTail.next = e;
                                    hiTail = e;
                                }
                            } while ((e = next) != null);
                            if (loTail != null) {
                                loTail.next = null;
                                newTab[j] = loHead;
                            }
                            if (hiTail != null) {
                                hiTail.next = null;
                                newTab[j + oldCap] = hiHead;
                            }
                        }
                    }
                }
            }
            return newTab;
        }

    5、删除

        public V remove(Object key) {
            Node<K,V> e;
            return (e = removeNode(hash(key), key, null, false, true)) == null ?
                null : e.value;
        }
        final Node<K,V> removeNode(int hash, Object key, Object value,
                                   boolean matchValue, boolean movable) {
         //tab 哈希数组,p 数组下标的结点,n 数组的长度,index 当前数组的下标
            Node<K,V>[] tab; Node<K,V> p; int n, index;
         //哈希数组不为null,长度大于0,且该链表不为null
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (p = tab[index = (n - 1) & hash]) != null) {
            //node 存储要删除的结点,e 临时变量,k 当前结点的key值,v 当前结点的value值
                Node<K,V> node = null, e; K k; V v;
           //首结点正好是需要找的结点
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    node = p;
                else if ((e = p.next) != null) {
              //如果是红黑树中的结点,则去红黑树中找
                    if (p instanceof TreeNode)
                        node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                    else {
                //遍历该链表,寻找其结点
                        do {
                            if (e.hash == hash &&
                                ((k = e.key) == key ||
                                 (key != null && key.equals(k)))) {
                                node = e;
                                break;
                            }
                            p = e;
                        } while ((e = e.next) != null);
                    }
                }
           //找到要删除的结点后,判断!matchValue,我们正常remove删除,!matchValue都是true
                if (node != null && (!matchValue || (v = node.value) == value ||
                                     (value != null && value.equals(v)))) {
              //如果是红黑树中的结点,则去红黑树中删除
                    if (node instanceof TreeNode)
                        ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
              //此处表示要删除的结点时头结点
                    else if (node == p)
                        tab[index] = node.next;
                    else
                        p.next = node.next;
                    ++modCount;
              //长度减一
                    --size;
                    afterNodeRemoval(node);
                    return node;
                }
            }
         //如果返回的时null,表示没有该结点,删除失败
            return null;
        }

    6、查找

        public V get(Object key) {
            Node<K,V> e;
            return (e = getNode(hash(key), key)) == null ? null : e.value;
        }
        final Node<K,V> getNode(int hash, Object key) {
         //tab 哈希数组,first 表示某一个数组下标的头结点,n 数组的长度,k 表示当前结点的key值
            Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
         //哈希数组不为null,长度大于0,并且该链表不为null
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
            //如果是头结点,则直接返回
                if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                    return first;
           //不是头结点
                if ((e = first.next) != null) {
              //判断是否为红黑树中的结点
                    if (first instanceof TreeNode)
                        return ((TreeNode<K,V>)first).getTreeNode(hash, key);
              //遍历链表查询
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null);
                }
            }
         //返回null,表示不存在该结点
            return null;
        }
  • 相关阅读:
    数据库开发及ADO.NET
    C#典型案例及分析
    Visual Studio 2017 常用快捷键
    C#方法(函数)
    Linux常用命令----RPM包管理
    Linux常用命令----VIM命令
    Linux常用命令----压缩解压命令
    Linux常用命令----用户管理命令
    文件搜索命令
    Linux常用命令----权限管理命令
  • 原文地址:https://www.cnblogs.com/buhuiflydepig/p/12519614.html
Copyright © 2020-2023  润新知