• HDU 3468:A Simple Problem with Integers(线段树+延迟标记)


    A Simple Problem with Integers
    Case Time Limit: 2000MS

    Description

    You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

    Input

    The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
    The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
    Each of the next Q lines represents an operation.
    "C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
    "Q a b" means querying the sum of AaAa+1, ... , Ab.

    Output

    You need to answer all Q commands in order. One answer in a line.

    Sample Input

    10 5
    1 2 3 4 5 6 7 8 9 10
    Q 4 4
    Q 1 10
    Q 2 4
    C 3 6 3
    Q 2 4
    

    Sample Output

    4
    55
    9
    15

    Hint

    The sums may exceed the range of 32-bit integers.
     
     
    算法:线段树+延迟标记
     
     
    #include <iostream>
    #include <cstdio>
    
    using namespace std;
    
    const int maxn = 1e5+7;
    
    typedef long long ll;
    
    struct node {
        int l, r;
        ll sum;
    }tree[maxn << 2];
    
    int n, m;
    ll arr[maxn];
    ll lazy[maxn << 2];     //懒惰数组
    
    void pushup(int root) {
        tree[root].sum = tree[root << 1].sum + tree[root << 1 | 1].sum;
    }
    
    void build(int root, int l ,int r) {
        tree[root].l = l;
        tree[root].r = r;
        lazy[root] = 0;
        if(l == r) {
            tree[root].sum = arr[l];
            return;
        }
        int mid = (l + r) >> 1;
        build(root << 1, l, mid);
        build(root << 1 | 1, mid + 1, r);
        pushup(root);
    }
    
    void spread(int root) {
        if(lazy[root]) {        //判断延迟标记是否存在
            lazy[root << 1] += lazy[root];          //左子树下传延迟标记
            lazy[root << 1 | 1] += lazy[root];      //右子树下传延迟标记
            tree[root << 1].sum += lazy[root] * (tree[root << 1].r - tree[root << 1].l + 1);        //更新左结点信息
            tree[root << 1 | 1].sum += lazy[root] * (tree[root << 1 | 1].r - tree[root << 1 | 1].l + 1);       //更新右结点信息
            lazy[root] = 0;     //清除延迟标记    
        }
    }
    
    void update(int root, int x, int y, ll val) {
        int l = tree[root].l;
        int r = tree[root].r;
        if(x <= l && r <= y) {
            tree[root].sum += (r - l + 1) * val;
            lazy[root] += val;      //添加延迟标记
            return;
        }
        spread(root);       //下传延迟标记
        int mid = (l + r) >> 1;
        if(x <= mid) {
            update(root << 1, x, y, val);
        }
        if(y > mid) {
            update(root << 1 | 1, x, y, val);
        }
        pushup(root);
    }
    
    ll query(int root, int x, int y) {
        int l = tree[root].l;
        int r = tree[root].r;
        if(x <= l && r <= y) {      //完全覆盖
            return tree[root].sum;
        }
        spread(root);       //下传延迟标记
        ll res = 0;
        int mid = (l + r) >> 1;
        if(x <= mid) {
            res += query(root << 1, x, y);
        }
        if(y > mid) {
            res += query(root << 1 | 1, x, y);
        }
        return res;
    }
    
    int main() {
        while(~scanf("%d %d", &n, &m)) {
            for(int i = 1; i <= n; i++) {
                scanf("%lld", &arr[i]);
            }
            build(1, 1, n);
            while(m--) {
                char op[5];
                int l, r;
                scanf("%s", op);
                if(op[0] == 'Q') {
                    scanf("%d %d", &l, &r);
                    printf("%lld
    ", query(1, l, r));
                } else {
                    ll val;
                    scanf("%d %d %lld", &l, &r, &val);
                    update(1, l, r, val);
                }
            }
        }
        return 0;
    }
  • 相关阅读:
    Android权限 uses-permission
    Android中的颜色设置
    px 与 dp, sp换算公式?
    如何成为一名黑客?(转)
    uva 1291(dp)
    框架模式 MVC 在Android中的使用
    CCA概述和安装
    机房收费系统合作版(三)——UI思索
    (36)JS运动之使物体向右运动
    二叉查找树的非递归操作
  • 原文地址:https://www.cnblogs.com/buhuiflydepig/p/11278882.html
Copyright © 2020-2023  润新知