最大连续子序列
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 37834 Accepted Submission(s): 17032
Problem Description
给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ...,
Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,
例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和
为20。
在今年的数据结构考卷中,要求编写程序得到最大和,现在增加一个要求,即还需要输出该
子序列的第一个和最后一个元素。
Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,
例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和
为20。
在今年的数据结构考卷中,要求编写程序得到最大和,现在增加一个要求,即还需要输出该
子序列的第一个和最后一个元素。
Input
测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( < 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元
素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。
素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。
Sample Input
6
-2 11 -4 13 -5 -2
10
-10 1 2 3 4 -5 -23 3 7 -21
6
5 -8 3 2 5 0
1
10
3
-1 -5 -2
3
-1 0 -2
0
Sample Output
20 11 13
10 1 4
10 3 5
10 10 10
0 -1 -2
0 0 0
Huge input, scanf is recommended.
Hint
Hint题解:dp[i] = max(a[i],dp[i-1]+a[i])
#include <cstdio> #include <cstring> #include <algorithm> #include <iostream> using namespace std; const int maxn = 1e5+5; int dp[maxn]; int sum[maxn]; int a[maxn]; int main(){ int n; while(scanf("%d",&n) &&n){ for(int i=1;i<=n;i++){ scanf("%d",&a[i]); } int left=1,right=1; int t=a[1]; memset(dp,0,sizeof(dp)); dp[1]=0; for(int i=2;i<=n;i++){ dp[i]=0; } for(int i=2;i<=n;i++){ dp[i]=max(a[i],dp[i-1]+a[i]); if(dp[i]>t){ right=i; t=dp[i]; } } int sum=0; for(int i=right;i>0;i--){ sum+=a[i]; if(sum==t){ left=i; break; } } if(t<0){ printf("0 %d %d ",a[1],a[n]); continue; } printf("%d %d %d ",t,a[left],a[right]); } }
dp[i] = max(a[i],dp[i-1]+a[i])