传送门:https://www.spoj.com/problems/VLATTICE/en/
题意:
在三维坐标系下,你在点(0,0,0),看的范围是(n,n,n)以内,求你可以看见多少个点没有被遮挡
题解:
一条线上的点肯定是会被挡的
所以我们求的是(gcd(x,y,z)==1)的组数
我们设
[f(d):gcd(x,y,z)=d的对数\
F(d):d|gcd(x,y,z)的对数\
由于F(d)为[n/d]*[n/d]*[n/d]\
所以反演可得\
f(1)=mu[d]*[n/d]*[n/d]*[n/d]\
由于坐标系上的点也要算的话\
1.我们的点(0,0,1)、(1,0,1)、(0,1,1)\
2.xoy,xoz,xoy面上的点gcd(i,j)==1; \
3.其他点 gcd(i,j,k)==1
]
代码:
#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef long long ll;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define ls rt<<1
#define rs rt<<1|1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********
")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]
"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]
"
#define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]
"
const double eps = 1e-8;
const int mod = 1e9 + 7;
const int maxn = 1e6 + 5;
const int INF = 0x3f3f3f3f;
const LL INFLL = 0x3f3f3f3f3f3f3f3f;
int mu[maxn];
int prime[maxn];
int not_prime[maxn];
int tot;
void Mobiwus(int n) {
mu[1] = 1;
for(int i = 2; i <= n; i++) {
if(!not_prime[i]) {
prime[++tot] = i;
mu[i] = -1;
}
for(int j = 1; prime[j]*i <= n; j++) {
not_prime[prime[j]*i] = 1;
if(i % prime[j] == 0) {
mu[prime[j]*i] = 0;
break;
}
mu[prime[j]*i] = -mu[i];
}
}
}
int main() {
#ifndef ONLINE_JUDGE
FIN
#endif
int T;
Mobiwus(1000005);
scanf("%d", &T);
while(T--) {
int n;
scanf("%d", &n);
LL ans = 3;
for(int i = 1; i <= n; i++) {
ans += 1LL * mu[i] * (n / i) * (n / i) * (n / i);
}
for(int i = 1; i <= n; i++) {
ans += 1LL * mu[i] * (n / i) * (n / i) * 3;
}
printf("%lld
", ans);
}
return 0;
}