• java 线程池


    1、线程池的优势

    (1)、降低系统资源消耗,通过重用已存在的线程,降低线程创建和销毁造成的消耗;
    (2)、提高系统响应速度,当有任务到达时,通过复用已存在的线程,无需等待新线程的创建便能立即执行;
    (3)方便线程并发数的管控。因为线程若是无限制的创建,可能会导致内存占用过多而产生OOM,并且会造成cpu过度切换(cpu切换线程是有时间成本的(需要保持当前执行线程的现场,并恢复要执行线程的现场))。
    (4)提供更强大的功能,延时定时线程池。

    2、线程池的主要参数

    public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }
    

    1、corePoolSize(线程池基本大小):当向线程池提交一个任务时,若线程池已创建的线程数小于corePoolSize,即便此时存在空闲线程,也会通过创建一个新线程来执行该任务,直到已创建的线程数大于或等于corePoolSize时,(除了利用提交新任务来创建和启动线程(按需构造),也可以通过 prestartCoreThread() 或 prestartAllCoreThreads() 方法来提前启动线程池中的基本线程。)

    2、maximumPoolSize(线程池最大大小):线程池所允许的最大线程个数。当队列满了,且已创建的线程数小于maximumPoolSize,则线程池会创建新的线程来执行任务。另外,对于无界队列,可忽略该参数。

    3、keepAliveTime(线程存活保持时间)当线程池中线程数大于核心线程数时,线程的空闲时间如果超过线程存活时间,那么这个线程就会被销毁,直到线程池中的线程数小于等于核心线程数。

    4、workQueue(任务队列):用于传输和保存等待执行任务的阻塞队列。

    5、threadFactory(线程工厂):用于创建新线程。threadFactory创建的线程也是采用new Thread()方式,threadFactory创建的线程名都具有统一的风格:pool-m-thread-n(m为线程池的编号,n为线程池内的线程编号)。

    5、handler(线程饱和策略):当线程池和队列都满了,再加入线程会执行此策略。

    3、线程池流程

     
    线程池流程

    1、判断核心线程池是否已满,没满则创建一个新的工作线程来执行任务。已满则。
    2、判断任务队列是否已满,没满则将新提交的任务添加在工作队列,已满则。
    3、判断整个线程池是否已满,没满则创建一个新的工作线程来执行任务,已满则执行饱和策略。

    (1、判断线程池中当前线程数是否大于核心线程数,如果小于,在创建一个新的线程来执行任务,如果大于则
    2、判断任务队列是否已满,没满则将新提交的任务添加在工作队列,已满则。
    3、判断线程池中当前线程数是否大于最大线程数,如果小于,则创建一个新的线程来执行任务,如果大于,则执行饱和策略。)

    4、线程池为什么需要使用(阻塞)队列?

    回到了非线程池缺点中的第3点:
    1、因为线程若是无限制的创建,可能会导致内存占用过多而产生OOM,并且会造成cpu过度切换。

    另外回到了非线程池缺点中的第1点:
    2、创建线程池的消耗较高。
    或者下面这个网上并不高明的回答:
    2、线程池创建线程需要获取mainlock这个全局锁,影响并发效率,阻塞队列可以很好的缓冲。

    5、线程池为什么要使用阻塞队列而不使用非阻塞队列?

    阻塞队列可以保证任务队列中没有任务时阻塞获取任务的线程,使得线程进入wait状态,释放cpu资源。
    当队列中有任务时才唤醒对应线程从队列中取出消息进行执行。
    使得在线程不至于一直占用cpu资源。

    (线程执行完任务后通过循环再次从任务队列中取出任务进行执行,代码片段如下
    while (task != null || (task = getTask()) != null) {})。

    不用阻塞队列也是可以的,不过实现起来比较麻烦而已,有好用的为啥不用呢?

    6、如何配置线程池

    CPU密集型任务
    尽量使用较小的线程池,一般为CPU核心数+1。 因为CPU密集型任务使得CPU使用率很高,若开过多的线程数,会造成CPU过度切换。

    IO密集型任务
    可以使用稍大的线程池,一般为2*CPU核心数。 IO密集型任务CPU使用率并不高,因此可以让CPU在等待IO的时候有其他线程去处理别的任务,充分利用CPU时间。

    混合型任务
    可以将任务分成IO密集型和CPU密集型任务,然后分别用不同的线程池去处理。 只要分完之后两个任务的执行时间相差不大,那么就会比串行执行来的高效。
    因为如果划分之后两个任务执行时间有数据级的差距,那么拆分没有意义。
    因为先执行完的任务就要等后执行完的任务,最终的时间仍然取决于后执行完的任务,而且还要加上任务拆分与合并的开销,得不偿失。

    7、java中提供的线程池

    Executors类提供了4种不同的线程池:newCachedThreadPool, newFixedThreadPool, newScheduledThreadPool, newSingleThreadExecutor

     
    java线程池对比

    1、newCachedThreadPool:用来创建一个可以无限扩大的线程池,适用于负载较轻的场景,执行短期异步任务。(可以使得任务快速得到执行,因为任务时间执行短,可以很快结束,也不会造成cpu过度切换)

    2、newFixedThreadPool:创建一个固定大小的线程池,因为采用无界的阻塞队列,所以实际线程数量永远不会变化,适用于负载较重的场景,对当前线程数量进行限制。(保证线程数可控,不会造成线程过多,导致系统负载更为严重)

    3、newSingleThreadExecutor:创建一个单线程的线程池,适用于需要保证顺序执行各个任务。

    4、newScheduledThreadPool:适用于执行延时或者周期性任务。

    8、execute()和submit()方法

    1、execute(),执行一个任务,没有返回值。
    2、submit(),提交一个线程任务,有返回值。
    submit(Callable<T> task)能获取到它的返回值,通过future.get()获取(阻塞直到任务执行完)。一般使用FutureTask+Callable配合使用(IntentService中有体现)。

    submit(Runnable task, T result)能通过传入的载体result间接获得线程的返回值。
    submit(Runnable task)则是没有返回值的,就算获取它的返回值也是null。

    Future.get方法会使取结果的线程进入阻塞状态,知道线程执行完成之后,唤醒取结果的线程,然后返回结果。

     // 线程池demo
    public static void main(String[] args) throws InterruptedException {
    ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(Runtime.getRuntime().availableProcessors() * 2, Runtime.getRuntime().availableProcessors() * 2, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(), new ThreadFactory() {
    private int id = 0;
    @Override
    public Thread newThread(Runnable r) {
    Thread t = new Thread(r);
    t.setName("Thread-Name:" + id++);
    return t;
    }
    });
    threadPoolExecutor.submit(new Task(0, 100));
    threadPoolExecutor.submit(new Task(101,200));
    threadPoolExecutor.submit(new Task(201,300));

    threadPoolExecutor.shutdown();
    }

    static class Task implements Runnable{
    private int min;
    private int max;

    public Task(int min, int max) {
    this.min = min;
    this.max = max;
    }

    @Override
    public void run() {
    System.out.println(Thread.currentThread().getName()+","+min+","+max);
    }
    }
  • 相关阅读:
    C++解析XML
    C/C++获取CPU等硬件信息&&屏幕截图
    C/C++使用Socket通信UDP
    C/C++远程开机
    通过匿名管道获取CMD运行结果
    管道同步通信
    VS2013入门驱动配置测试
    仿LordPE获取PE结构
    ossutil64 替换 lrzsz 方法
    shell perl 等
  • 原文地址:https://www.cnblogs.com/bt2882/p/13321920.html
Copyright © 2020-2023  润新知