题意:
找3个整数x1,a,b;然后按照递推公式计算出一个长度为2T的序列,其中T为测试数据的组数。然后把奇数项当做输入,偶数项当做输出。
/*UVa12169 - Disgruntled Judge
--a,b都在10000以内,这样可以枚举a的值,然后根据x1和x3计算出b的值,再遍历数组X判断他们是否合法
--很容易得到x3=(a*a*x1+(a+1)*b)%10001;变形一下可以得到:(a+1)*b+10001*k=x3-a*a*x1;直接利用扩展欧几里得算法
求解b在[0,10000]的唯一解。
*/
#define _CRT_SECURE_NO_DEPRECATE
#include<bits/stdc++.h>
using namespace std;
const int maxn =100 + 10;
const int mod = 10001;
typedef long long LL;
LL F[maxn * 2];
//扩展欧几里德算法,求解ax+by=gcd(a,b)系数
void extendEuclid(LL a, LL b, LL &d, LL &x, LL&y){
if (!b){ d = a; x = 1; y = 0; }
else{ extendEuclid(b, a%b, d, y, x); y -= x*(a / b); }
}
//求ax+by=n的一个解(x0,y0)
//所有解为(x0+t*b,y0-t*a),t是任意整数
LL solveLiner(LL a, LL b, LL n, LL&x, LL&y){
LL d;
extendEuclid(a, b, d, x, y);
if (n%d)return 0; //无解
x = (n / d)*x; y = (n / d)*y;
return 1;
}
inline LL answer(LL a, LL b, LL x){ return (a*x + b) % mod; }
int main(){
int T,i;
LL a, b,k;
while (~scanf("%d", &T)){
for (i = 1; i <= 2 * T - 1; i += 2)
scanf("%d", &F[i]);
for (a = 0; a < mod; a++){
solveLiner(a + 1, mod, F[3] - a*a*F[1], b, k);
b = (b%mod + mod) % mod; //计算出b在[0,10000]的解
for (i = 2; i <= 2 * T; i++){
LL temp = answer(a, b, F[i - 1]);
if (i & 1 && temp != F[i])break;
F[i] = temp;
}
if (i == 2 * T + 1)break;
}
for (i = 2; i <= 2 * T; i += 2)
printf("%lld
", F[i]);
}
return 0;
}