• 吴恩达机器学习笔记_第三周


    Logistic Regression逻辑回归(分类):

    0:Negative Class

    1:Positive Class

    二元分类问题讲起。尽管有回归二字,事实上为分类算法,处理离散y值。

     

    输出以以条件概率表示。若P(y=1|x;theta)= 0.7,表示有70%的概率y=1.那么有30%的概率y=0

     

    决策边界(DecisionBoundary):当z=0,即thetaT*X的值等于零时,此时如果函数为0.5

     

    以下是还有一个边界的样例:

    仅仅要得到theta值。就能得到决策边界

     

    逻辑回归的代价函数非常可能是一个非凸函数(non-convex),有非常多局部最长处,所以假设用梯度下降法,不能保证会收敛到全局最小值。

     

    单次的代价函数例如以下:

    终于多样本的代价函数以及我们要做的工作:

    依据前面的方法,同一时候地进行梯度下降法求出theta向量。

     

    优化方法:共轭梯度、BFGS等等,无需选学习率,自己主动的,比梯度下降快,可是复杂。建议直接调用库。

     

    多元分类:

    1对多方法

    h函数事实上就相应着条件概率,所以就是训练三个分类器。选条件概率最高的。

     

    过拟合问题overfitting——正则化Regulation

    对训练数据效果非常好,但无法对新数据进行非常好的预測。泛化能力弱,就是一般性不好

    參数过多,高阶项多等。

    解决方法:

    1、降低特征数量(找基本的,或者用算法找)

    2、正则化(保留全部參数。但较少维度或数量级)

     

    正则化项:增加參数过多的惩处。当中lamda是控制正则化參数

    lamda过大,easy造成欠拟合underfitting。相当于全部theta都约等于0。仅仅剩第一项。

     

    正则化线性回归:正则化+梯度下降结合:

    不惩处theta0,所以分开写

    正规化方法加上正则化项后的求法:

     

    正则化逻辑回归:

    用梯度下降法的改动和线性回归形式一样,仅仅是h函数不一样

     

     

  • 相关阅读:
    深入RESTful无状态原则
    基于Tomcat7、Java、WebSocket的服务器推送聊天室
    java.lang.NoSuchMethodException: org.apache.catalina.deploy.WebXml addServlet
    POI操作Excel常用方法总结
    第章 子例程引用与闭包
    集团企业数据信息系统建设方案
    集团企业数据信息系统建设方案
    不是更快更强,而是更加自如——2015年终总结
    RESTful_基础知识
    RESTful_基础知识
  • 原文地址:https://www.cnblogs.com/brucemengbm/p/7399575.html
Copyright © 2020-2023  润新知