Language:
Check the difficulty of problems
Description
Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:
1. All of the teams solve at least one problem. 2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems. Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem. Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems? Input
The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines,
the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.
Output
For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.
Sample Input 2 2 2 0.9 0.9 1 0.9 0 0 0 Sample Output 0.972 Source
POJ Monthly,鲁小石
|
题意: n个人,m道题,求每一个人做出题,而且至少一个做出k道题的概率
思路:等于每一个人做出题的概率--每一个人做出题而且没有一个人做出k到题的概率
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<queue> #include<stack> #include<vector> #include<set> #include<map> #define L(x) (x<<1) #define R(x) (x<<1|1) #define MID(x,y) ((x+y)>>1) #define eps 1e-8 typedef __int64 ll; #define fre(i,a,b) for(i = a; i < b; i++) #define free(i,b,a) for(i = b; i >= a;i--) #define mem(t, v) memset ((t) , v, sizeof(t)) #define ssf(n) scanf("%s", n) #define sf(n) scanf("%d", &n) #define sff(a,b) scanf("%d %d", &a, &b) #define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c) #define pf printf #define bug pf("Hi ") using namespace std; #define INF 0x3f3f3f3f #define N 1005 double dp[N][35][35]; // dp[i][j][k] 第 i 个人 前 j 道题 做 k 道概率 double p[N][35]; int n,m,k; void solve() { int i,j,t; mem(dp,0); fre(i,1,n+1) //初始每个人第一道题 对 与不正确 { dp[i][1][0]=1-p[i][1]; dp[i][1][1]=p[i][1]; } fre(i,1,n+1) //每个人m到题都没有作对 { fre(j,2,m+1) dp[i][j][0]=dp[i][j-1][0]*(1-p[i][j]); } fre(i,1,n+1) //每个人j道题 做t道概率 fre(j,2,m+1) fre(t,1,j+1) { if(t<j) dp[i][j][t]=dp[i][j-1][t]*(1-p[i][j])+dp[i][j-1][t-1]*p[i][j]; else dp[i][j][t]=dp[i][j-1][t-1]*p[i][j]; } double p1=1,p2; fre(i,1,n+1) p1*=(1-dp[i][m][0]); //每个人都做出提的概率 p2=1; fre(i,1,n+1) { double te=0; fre(j,1,k) te+=dp[i][m][j]; p2*=te; //每个人做出题可是没有一个做了k道题的概率 } pf("%.3lf ",p1-p2); } int main() { int i,j; while(~sfff(m,n,k),n+m+k) { fre(i,1,n+1) fre(j,1,m+1) scanf("%lf",&p[i][j]); solve(); } return 0; }