• 31.电视采集项目流程spark篇通过sparksql处理业务逻辑


    新建包

    package com.it19gong.clickproject;
    
    import java.io.IOException;
    
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    public class AccessLogPreProcessMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
        Text text = new Text();
        @Override
    protected void map(LongWritable key, Text value,Context context)
            throws IOException, InterruptedException {
           String itr[] = value.toString().split(" ");
           if (itr.length < 11)
            {
                return;
            }
            String ip = itr[0];
            String date = AnalysisNginxTool.nginxDateStmpToDate(itr[3]);
            String url = itr[6];
            String upFlow = itr[9];
            
            text.set(ip+","+date+","+url+","+upFlow);
            context.write(text, NullWritable.get());
           
    }
    }
    package com.it19gong.clickproject;
    
    import java.text.ParseException;
    import java.text.SimpleDateFormat;
    import java.util.Date;
    
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    public class AnalysisNginxTool
    {
        private static Logger logger = LoggerFactory.getLogger(AnalysisNginxTool.class);
    
        public static String nginxDateStmpToDate(String date)
        {
            String res = "";
            try
            {
                SimpleDateFormat df = new SimpleDateFormat("[dd/MM/yyyy:HH:mm:ss");
                String datetmp = date.split(" ")[0].toUpperCase();
                String mtmp = datetmp.split("/")[1];
                DateToNUM.initMap();
                datetmp = datetmp.replaceAll(mtmp, (String) DateToNUM.map.get(mtmp));
                System.out.println(datetmp);
                Date d = df.parse(datetmp);
                SimpleDateFormat sdf = new SimpleDateFormat("yyyy/MM/dd");
                res = sdf.format(d);
            }
            catch (ParseException e)
            {
                logger.error("error:" + date, e);
            }
            return res;
        }
    
        public static long nginxDateStmpToDateTime(String date)
        {
            long l = 0;
            try
            {
                SimpleDateFormat df = new SimpleDateFormat("[dd/MM/yyyy:HH:mm:ss");
                String datetmp = date.split(" ")[0].toUpperCase();
                String mtmp = datetmp.split("/")[1];
                datetmp = datetmp.replaceAll(mtmp, (String) DateToNUM.map.get(mtmp));
    
                Date d = df.parse(datetmp);
                l = d.getTime();
            }
            catch (ParseException e)
            {
                logger.error("error:" + date, e);
            }
            return l;
        }
    }
    package com.it19gong.clickproject;
    
    import junit.framework.Test;
    import junit.framework.TestCase;
    import junit.framework.TestSuite;
    
    /**
     * Unit test for simple App.
     */
    public class AppTest 
        extends TestCase
    {
        /**
         * Create the test case
         *
         * @param testName name of the test case
         */
        public AppTest( String testName )
        {
            super( testName );
        }
    
        /**
         * @return the suite of tests being tested
         */
        public static Test suite()
        {
            return new TestSuite( AppTest.class );
        }
    
        /**
         * Rigourous Test :-)
         */
        public void testApp()
        {
            assertTrue( true );
        }
    }
    package com.it19gong.clickproject;
    
    import java.util.HashMap;
    
    public class DateToNUM
    {
        public static HashMap map = new HashMap();
    
        public static void initMap()
        {
            map.put("JAN", "01");
            map.put("FEB", "02");
            map.put("MAR", "03");
            map.put("APR", "04");
            map.put("MAY", "05");
            map.put("JUN", "06");
            map.put("JUL", "07");
            map.put("AUG", "08");
            map.put("SEPT", "09");
            map.put("OCT", "10");
            map.put("NOV", "11");
            map.put("DEC", "12");
        }
    }

    新建AccessLogDriver类

    package com.it19gong.clickproject;
    
    import java.io.IOException;
    import java.util.ArrayList;
    import java.util.List;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import org.apache.spark.api.java.function.Function;
    import org.apache.spark.sql.DataFrame;
    import org.apache.spark.sql.Row;
    import org.apache.spark.sql.RowFactory;
    import org.apache.spark.sql.SQLContext;
    import org.apache.spark.sql.types.DataTypes;
    import org.apache.spark.sql.types.StructField;
    import org.apache.spark.sql.types.StructType;
    
    public class AccessLogDriver {
        
        public static void main(String[] args) throws Exception {
            
            // 创建SparkConf、JavaSparkContext、SQLContext
                    SparkConf conf = new SparkConf()
                            .setMaster("local")  
                            .setAppName("RDD2DataFrameProgrammatically");  
                    JavaSparkContext sc = new JavaSparkContext(conf);
                    SQLContext sqlContext = new SQLContext(sc);
                
                    // 第一步,创建一个普通的RDD,但是,必须将其转换为RDD<Row>的这种格式
                    JavaRDD<String> lines = sc.textFile("E:\Mycode\dianshixiangmu\sparkproject\data\access.log");
                    
                    // 分析一下
                    // 它报了一个,不能直接从String转换为Integer的一个类型转换的错误
                    // 就说明什么,说明有个数据,给定义成了String类型,结果使用的时候,要用Integer类型来使用
                    // 而且,错误报在sql相关的代码中
                    // 所以,基本可以断定,就是说,在sql中,用到age<=18的语法,所以就强行就将age转换为Integer来使用
                    // 但是,肯定是之前有些步骤,将age定义为了String
                    // 所以就往前找,就找到了这里
                    // 往Row中塞数据的时候,要注意,什么格式的数据,就用什么格式转换一下,再塞进去
                    JavaRDD<Row> clickRDD = lines.map(new Function<String, Row>() {
    
                        private static final long serialVersionUID = 1L;
    
                        @Override
                        public Row call(String line) throws Exception {
                            String itr[] = line.split(" ");
                               
                                String ip = itr[0];
                                String date = AnalysisNginxTool.nginxDateStmpToDate(itr[3]);
                                String url = itr[6];
                                String upFlow = itr[9];
                            
                            return RowFactory.create(
                                    ip,
                                    date,
                                    url,
                                    Integer.valueOf(upFlow)
                                    );      
                        }
                        
                    });
                    
                    // 第二步,动态构造元数据
                    // 比如说,id、name等,field的名称和类型,可能都是在程序运行过程中,动态从mysql db里
                    // 或者是配置文件中,加载出来的,是不固定的
                    // 所以特别适合用这种编程的方式,来构造元数据
                    List<StructField> structFields = new ArrayList<StructField>();
                    structFields.add(DataTypes.createStructField("ip", DataTypes.StringType, true));  
                    structFields.add(DataTypes.createStructField("date", DataTypes.StringType, true));  
                    structFields.add(DataTypes.createStructField("url", DataTypes.StringType, true)); 
                    structFields.add(DataTypes.createStructField("upflow", DataTypes.IntegerType, true));  
                    StructType structType = DataTypes.createStructType(structFields);
                    
                    // 第三步,使用动态构造的元数据,将RDD转换为DataFrame
                    DataFrame studentDF = sqlContext.createDataFrame(clickRDD, structType);
                
                    // 后面,就可以使用DataFrame了
                    studentDF.registerTempTable("log");  
                    
                    DataFrame sumFlowDF = sqlContext.sql("select ip,sum(upflow) as sum from log group by ip order by sum desc"); 
                    
                    List<Row> rows = sumFlowDF.javaRDD().collect();
                    for(Row row : rows) {
                        System.out.println(row);  
                    }
            
        }
    
    }

    运行程序

    新建DBHelper类

    package com.it19gong.clickproject;
    
    
    import java.sql.Connection;
    import java.sql.DriverManager;
    import java.sql.SQLException;
    
    public class DBHelper {
    
        public static final String url ="jdbc:mysql://192.168.86.131:3306/userdb";
        public static final String name="com.mysql.jdbc.Driver";
        public static final String user="sqoop";
        public static final String password="sqoop";
        
        //获取数据库连接
        public Connection conn=null;
        
        public DBHelper(){
            try {
                Class.forName(name);
                conn = DriverManager.getConnection(url, user, password);
            } catch (Exception e) {
                // TODO: handle exception
                e.printStackTrace();
            }
        }    
        
    
        public void close(){
            try {
                this.conn.close();
            } catch (SQLException e) {
                // TODO: handle exception
                e.printStackTrace();
            }
        }
        
    }

    修改AccessLogDriver类

    package com.it19gong.clickproject;
    
    
    
    import java.sql.PreparedStatement;
    import java.util.ArrayList;
    import java.util.List;
    
    
    
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import org.apache.spark.api.java.function.Function;
    import org.apache.spark.api.java.function.VoidFunction;
    import org.apache.spark.sql.DataFrame;
    import org.apache.spark.sql.Row;
    import org.apache.spark.sql.RowFactory;
    import org.apache.spark.sql.SQLContext;
    import org.apache.spark.sql.types.DataTypes;
    import org.apache.spark.sql.types.StructField;
    import org.apache.spark.sql.types.StructType;
    
    
    
    public class AccessLogDriver {
        static DBHelper db1=null;
        public static void main(String[] args) throws Exception {
            
            // 创建SparkConf、JavaSparkContext、SQLContext
                    SparkConf conf = new SparkConf()
                            .setMaster("local")  
                            .setAppName("RDD2DataFrameProgrammatically");  
                    JavaSparkContext sc = new JavaSparkContext(conf);
                    SQLContext sqlContext = new SQLContext(sc);
                
                    // 第一步,创建一个普通的RDD,但是,必须将其转换为RDD<Row>的这种格式
                    JavaRDD<String> lines = sc.textFile("E:\Mycode\dianshixiangmu\sparkproject\data\access.log");
                    
                    // 分析一下
                    // 它报了一个,不能直接从String转换为Integer的一个类型转换的错误
                    // 就说明什么,说明有个数据,给定义成了String类型,结果使用的时候,要用Integer类型来使用
                    // 而且,错误报在sql相关的代码中
                    // 所以,基本可以断定,就是说,在sql中,用到age<=18的语法,所以就强行就将age转换为Integer来使用
                    // 但是,肯定是之前有些步骤,将age定义为了String
                    // 所以就往前找,就找到了这里
                    // 往Row中塞数据的时候,要注意,什么格式的数据,就用什么格式转换一下,再塞进去
                    JavaRDD<Row> clickRDD = lines.map(new Function<String, Row>() {
    
                        private static final long serialVersionUID = 1L;
    
                        @Override
                        public Row call(String line) throws Exception {
                            String itr[] = line.split(" ");
                               
                                String ip = itr[0];
                                String date = AnalysisNginxTool.nginxDateStmpToDate(itr[3]);
                                String url = itr[6];
                                String upFlow = itr[9];
                            
                            return RowFactory.create(
                                    ip,
                                    date,
                                    url,
                                    Integer.valueOf(upFlow)
                                    );      
                        }
                        
                    });
                    
                    // 第二步,动态构造元数据
                    // 比如说,id、name等,field的名称和类型,可能都是在程序运行过程中,动态从mysql db里
                    // 或者是配置文件中,加载出来的,是不固定的
                    // 所以特别适合用这种编程的方式,来构造元数据
                    List<StructField> structFields = new ArrayList<StructField>();
                    structFields.add(DataTypes.createStructField("ip", DataTypes.StringType, true));  
                    structFields.add(DataTypes.createStructField("date", DataTypes.StringType, true));  
                    structFields.add(DataTypes.createStructField("url", DataTypes.StringType, true)); 
                    structFields.add(DataTypes.createStructField("upflow", DataTypes.IntegerType, true));  
                    StructType structType = DataTypes.createStructType(structFields);
                    
                    // 第三步,使用动态构造的元数据,将RDD转换为DataFrame
                    DataFrame studentDF = sqlContext.createDataFrame(clickRDD, structType);
                
                    // 后面,就可以使用DataFrame了
                    studentDF.registerTempTable("log");  
                    
                    DataFrame sumFlowDF = sqlContext.sql("select ip,sum(upflow) as sum from log group by ip order by sum desc"); 
                    
                    db1=new DBHelper();
                    final String sql="insert into upflow(ip,sum) values(?,?) ";
                    sumFlowDF.javaRDD().foreach(new VoidFunction<Row>() {
                        
                        @Override
                        public void call(Row t) throws Exception {
                            // TODO Auto-generated method stub
                            PreparedStatement pt = db1.conn.prepareStatement(sql);
                            pt.setString(1,t.getString(0));
                            pt.setString(2,String.valueOf(t.getLong(1)));
                            pt.executeUpdate();
                        }
                    });;
                    
            
        }
    
    }

    运行

    可以看到mysql数据库里面对了两条数据

  • 相关阅读:
    Golang Gin 实战(一)| 快速安装入门
    6 款最棒的 Go 语言 Web 框架简介
    Golang教科书般的web框架
    vgo简明教程
    go mod常用命令 已经 常见问题
    线程池原理讲解 Java专题
    Python 3.9安装与使用
    消息队列的基本概念
    实践——GIT安装(2021/05/01)
    vue2.0数据双向绑定原理分析及代码实现
  • 原文地址:https://www.cnblogs.com/braveym/p/12256338.html
Copyright © 2020-2023  润新知