题意
设A(n) = n个1,问有多少对i,j使得(A(i^j)equiv0(modp))
题解
(A(n) = frac{10^n-1}{9})
当9与p互质时(frac{10^n-1}{9}\%p = (10^n-1)cdot inv[9] \% p)
移动项得到(10^nequiv1(modp))
由欧拉定理当(gcd(10,p) = 1)时(10^{varphi(p)}equiv1(modp))
那么只要找到最小的d使得(10^dequiv1(modp))
问题就转化成求有多少对i,j使得(i^jequiv0(modp))
求d只需要枚举(varphi(p))的因子就好了
对d分解(d = p_1^{k_1}p_2^{k_2}cdots p_n^{k_n})
固定j,要使(i^j)是d的倍数,那么i一定是(p_1^{lceilfrac{k_1}{j}
ceil}p_2^{lceilfrac{k_2}{j}
ceil}cdots p_n^{lceilfrac{k_n}{j}
ceil})的倍数
设(g_j = p_1^{lceilfrac{k_1}{j}
ceil}p_2^{lceilfrac{k_2}{j}
ceil}cdots p_n^{lceilfrac{k_n}{j}
ceil}),答案就是(sum_{j=1}^mg_j),因为(k_i)不会超过30,
当j大于30时的(g_j)都一样就不用重复计算了
还有一个问题,当p=3时,因为9与3不互质,inv[9]不存在,式子(frac{10^n-1}{9}\%p Longleftrightarrow (10^n-1)cdot inv[9] \% p)
就不成立,需要特判,此时d取3
代码
#include <bits/stdc++.h>
using namespace std;
const int mx = 3e5+10;
typedef long long ll;
ll pow_mod(ll a, ll b, ll mod) {
ll ans = 1;
while (b > 0) {
if (b & 1) ans = ans * a % mod;
a = a * a % mod;
b /= 2;
}
return ans;
}
ll pow_mod(ll a, ll b) {
ll ans = 1;
while (b > 0) {
if (b & 1) ans = ans * a;
a = a * a;
b /= 2;
}
return ans;
}
vector <ll> pp, k;
int main() {
int T;
scanf("%d", &T);
while (T--) {
ll p, n, m, d;
scanf("%lld%lld%lld", &p, &n, &m);
if (p == 2 || p == 5) {
printf("0
");
continue;
}
d = p-1;
for (ll i = 1; i*i <= (p-1); i++) {
if ((p-1) % i == 0) {
if (pow_mod(10, i, p) == 1) {
d = min(d, i);
}
if (pow_mod(10, (p-1)/i, p) == 1) {
d = min(d, (p-1)/i);
}
}
}
if (p == 3) d = 3;
pp.clear(); k.clear();
ll ans = 0;
for (ll i = 2; i*i <= d; i++) {
if (d % i == 0) {
int tmp = 0;
while (d % i == 0) {
tmp++;
d /= i;
}
k.push_back(tmp);
pp.push_back(i);
}
}
if (d > 1) pp.push_back(d), k.push_back(1);
ll tmp = 1;
for (int i = 1; i <= min(30LL, m); i++) {
tmp = 1;
for (int j = 0; j < pp.size(); j++) {
ll b = k[j] / i;
if (k[j] % i != 0) b++;
tmp *= pow_mod(pp[j], b);
}
ans += n / tmp;
}
if (m > 30) ans += n / tmp * (m-30);
printf("%lld
", ans);
}
return 0;
}