题目连接:
https://ac.nowcoder.com/acm/contest/883/H
Description
There are always some problems that seem simple but is difficult to solve.
ZYB got N distinct points on a two-dimensional plane. He wants to draw a magic line so that the points will be divided into two parts, and the number of points in each part is the same. There is also a restriction: this line can not pass through any of the points.
Help him draw this magic line.
Input
There are multiple cases. The first line of the input contains a single integer (T(1<=T<=1000)), indicating the number of cases.
For each case, the first line of the input contains a single even integer (N (2 <= N <= 1000)), the number of points. The following (N) lines each contains two integers xi,yi |(xi,yi)| <= 1000, denoting the x-coordinate and the y-coordinate of the -th point.
It is guaranteed that the sum of N over all cases does not exceed 2*10^5.
Output
For each case, print four integers (x_1, y_1, x_2, y_2) in a line, representing a line passing through ((x_1, y_1)) and$ (x_2, y_2)$. Obviously the output must satisfy .
The absolute value of each coordinate must not exceed (10^9). It is guaranteed that at least one solution exists. If there are multiple solutions, print any of them.
Sample Input
1
4
0 1
-1 0
1 0
0 -1
Sample Output
-1 999000000 1 -999000001
Hint
题意
二维平面上有n个整数坐标的点,求出一条直线将平面上的点分为数量相等的两部分,且线上不能有点,输出线上两个点确定该直线
题解:
先在左下角无穷远处取一质数坐标点(x,y) 对该点和n个点进行极角排序,设排序后中点坐标为(a,b)则这两点连线会将点分为数量相等的两部分,接着取左下角关于中点的对称点(a+a-x, b+b-y),再将该点左移动一格变成(2a-x-1, 2b-y)
则(x,y) (2a-x-1, 2b-y)两点确定的直线就可以分割点为两部分,且线上不会有点
代码
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAX=100005;
const int INF=999999;
typedef long long ll;
int n,top;
struct Node
{
ll x,y;
}p[MAX],S[MAX];
ll Cross(Node a,Node b,Node c)
{
return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
ll dis(Node a,Node b)
{
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
bool cmp(Node a,Node b)
{
ll flag = Cross(p[1],a,b);
if(flag != 0) return flag > 0;
return dis(p[1],a) < dis(p[1],b);
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n;
scanf("%d", &n);
p[1].x = -400000009; p[1].y = -2e3;
for(int i=1;i<=n;i++)
scanf("%lld%lld",&p[i+1].x,&p[i+1].y);
n++;
sort(p+2, p+1+n, cmp);
int pos = n/2 + 1;
ll a = p[pos].x - p[1].x + p[pos].x-1;
ll b = p[pos].y - p[1].y + p[pos].y;
printf("%lld %lld %lld %lld
", p[1].x, p[1].y, a, b);
}
}