LeetCode: LRU Cache
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get
and set
.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value)
- Set or insert the value if the key is not
already present. When the cache reached its capacity, it should
invalidate the least recently used item before inserting a new item.
地址:https://oj.leetcode.com/problems/lru-cache/
算法:根据题目的意思是让我们模拟LRU算法(最近最常使用算法)。采用一个链表list来表示cache,这样方便删除链表中的任意元素,以及插入头节点元素。另外使用一个map来索引链表中的每一个关键值,这样能够快速的找到链表中关键值相对应的位置。算法实现三个函数:第一个为构造函数,用来设置cache的容量;第二个get函数,用于取得关键值key对应的value值,首先查找cache,如果未找到该key值,返回-1,如果找到该key值,则将该key对应的元素移到链表的头节点,并更新索引值;第三个函数为set函数,用于设置关键值key对应的value值,首先查找cache,如果找到该key值,则设置该key值对应的value值,并把该key值移到链表的头部,并更新索引值,如果没找到且cache容量还未到达最大值,则在链表的头部插入该key值,并且插入该key值对应的索引值,如果没找到且cache容量已经达到最大值,则根据LRU算法原则,删除链表的最后一个节点同时删除其索引值,然后将该key值插入链表头部,并插入索引值。代码:
1 class LRUCache{
2 public:
3 LRUCache(int capacity) {
4 cap = capacity;
5 }
6
7 int get(int key) {
8 map<int,Iter>::iterator it = index_map.find(key);
9 if(it == index_map.end()){
10 return -1;
11 }
12 Iter p = it->second;
13 int val = it->second->second;
14 cache.push_front(*p);
15 it->second = cache.begin();
16 cache.erase(p);
17 return val;
18 }
19
20 void set(int key, int value) {
21 map<int,Iter>::iterator it = index_map.find(key);
22 if (it != index_map.end()){
23 cache.push_front(make_pair(key,value));
24 cache.erase(it->second);
25 it->second = cache.begin();
26 return ;
27 }
28 if (cap > cache.size()){
29 cache.push_front(make_pair(key,value));
30 index_map[key] = cache.begin();
31 return ;
32 }
33 index_map.erase(cache.back().first);
34 cache.pop_back();
35 cache.push_front(make_pair(key,value));
36 index_map[key] = cache.begin();
37 }
38 typedef list<pair<int,int> >::iterator Iter;
39 list<pair<int,int> > cache;
40 map<int,Iter> index_map;
41 int cap;
42 };