随机数的产生:
tf.random_normal(形状,平均值,方差); 例如:
a = tf.random_normal([2,3],mean = 1.0,stddev = 1.0) with tf.Session() as sess: print(sess.run(a))
变量op:
作用:变量op能够持久化保存,普通的张量不行
注意的事项:当定义一个变量op的时候需要,一定要在会话(Session)中去初始化
a = tf.constant([1,2,3,4,5]) var = tf.Variable(tf.random_normal([3,4],mean=0.0,stddev=1.0)) #这是做了一步显示的初始化op inital_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(inital_op) print(sess.run([a,var]))
#数据类型的转化 a = [[1,2,3],[4,5,6]] print(a) b = tf.cast(a,tf.float32) #把int类型转化为float32类型 #把两个列表合并 c = [[1,2,3],[4,5,6]] d = [[7,8,9],[10,11,12]] e = tf.concat([c,d],axis = 0) #axis=0表示按行合并,axis=1表示按列合并 with tf.Session() as sess: print(sess.run(b)) print(sess.run(e))
可视化学习,把tensorflow的图结构体现在Web界面上
#其实在每一个op参数后边都有一个叫name的参数,这个是为了在tensorboard中显示我们自定义的op名字 a = tf.constant([1,2,3,4,5],name='a') var = tf.Variable(tf.random_normal([3,4],mean=0.0,stddev=1.0),name='var') #这是做了一步显示的初始化op inital_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(inital_op) #把程序的图结构写入事件文件中,graph:把你指定的图写入到事件文件中 file_wirte = tf.summary.FileWriter("./temp/summary/text/",graph=sess.graph) print(sess.run([a,var]))
在后台输入:tensorboard --logdir = "./temp/summary/text/"
这条语句会生成一个本机地址,在浏览器中打开就行了,如图所示: