• 时间序列预测——线性回归(上下界、异常检测),异常检测时候历史数据的输入选择是关键,使用过去历史值增加模型健壮性


    data download:

    https://github.com/nicolasmiller/pyculiarity/blob/master/tests/raw_data.csv

    数据集样子:

                               y
    timestamp                   
    1980-09-25 14:01:00  182.478
    1980-09-25 14:02:00  176.231
    1980-09-25 14:03:00  183.917
    1980-09-25 14:04:00  177.798
    1980-09-25 14:05:00  165.469
    1980-09-25 14:06:00  181.878
    1980-09-25 14:07:00  184.502
    1980-09-25 14:08:00  183.303
    1980-09-25 14:09:00  177.578
    1980-09-25 14:10:00  171.641
    1980-09-25 14:11:00  191.014
    1980-09-25 14:12:00  184.068
    1980-09-25 14:13:00  188.457
    1980-09-25 14:14:00  175.739
    1980-09-25 14:15:00  175.524
    1980-09-25 14:16:00  189.128
    1980-09-25 14:17:00  176.885
    1980-09-25 14:18:00  167.140
    1980-09-25 14:19:00  173.723
    1980-09-25 14:20:00  168.460
    1980-09-25 14:21:00  177.623
    1980-09-25 14:22:00  183.888
    

     做了shift处理前后:

                               y
    timestamp                   
    1980-09-25 14:01:00  182.478
    1980-09-25 14:02:00  176.231
    1980-09-25 14:03:00  183.917
    1980-09-25 14:04:00  177.798
    1980-09-25 14:05:00  165.469
    1980-09-25 14:06:00  181.878
    1980-09-25 14:07:00  184.502
    1980-09-25 14:08:00  183.303
    1980-09-25 14:09:00  177.578
    1980-09-25 14:10:00  171.641
    1980-09-25 14:11:00  191.014
    1980-09-25 14:12:00  184.068
    1980-09-25 14:13:00  188.457
    1980-09-25 14:14:00  175.739
    1980-09-25 14:15:00  175.524
    1980-09-25 14:16:00  189.128
    1980-09-25 14:17:00  176.885
    1980-09-25 14:18:00  167.140
    1980-09-25 14:19:00  173.723
    1980-09-25 14:20:00  168.460
    1980-09-25 14:21:00  177.623
    1980-09-25 14:22:00  183.888
    1980-09-25 14:23:00  167.487
    1980-09-25 14:24:00  165.572
    1980-09-25 14:25:00  170.480
    1980-09-25 14:26:00  172.474
    1980-09-25 14:27:00  166.448
    1980-09-25 14:28:00  163.098
    1980-09-25 14:29:00  163.544
    1980-09-25 14:30:00  163.816
                               y    lag_6   ...      lag_23   lag_24
    timestamp                               ...                     
    1980-09-25 14:01:00  182.478      NaN   ...         NaN      NaN
    1980-09-25 14:02:00  176.231      NaN   ...         NaN      NaN
    1980-09-25 14:03:00  183.917      NaN   ...         NaN      NaN
    1980-09-25 14:04:00  177.798      NaN   ...         NaN      NaN
    1980-09-25 14:05:00  165.469      NaN   ...         NaN      NaN
    1980-09-25 14:06:00  181.878      NaN   ...         NaN      NaN
    1980-09-25 14:07:00  184.502  182.478   ...         NaN      NaN
    1980-09-25 14:08:00  183.303  176.231   ...         NaN      NaN
    1980-09-25 14:09:00  177.578  183.917   ...         NaN      NaN
    1980-09-25 14:10:00  171.641  177.798   ...         NaN      NaN
    1980-09-25 14:11:00  191.014  165.469   ...         NaN      NaN
    1980-09-25 14:12:00  184.068  181.878   ...         NaN      NaN
    1980-09-25 14:13:00  188.457  184.502   ...         NaN      NaN
    1980-09-25 14:14:00  175.739  183.303   ...         NaN      NaN
    1980-09-25 14:15:00  175.524  177.578   ...         NaN      NaN
    1980-09-25 14:16:00  189.128  171.641   ...         NaN      NaN
    1980-09-25 14:17:00  176.885  191.014   ...         NaN      NaN
    1980-09-25 14:18:00  167.140  184.068   ...         NaN      NaN
    1980-09-25 14:19:00  173.723  188.457   ...         NaN      NaN
    1980-09-25 14:20:00  168.460  175.739   ...         NaN      NaN
    1980-09-25 14:21:00  177.623  175.524   ...         NaN      NaN
    1980-09-25 14:22:00  183.888  189.128   ...         NaN      NaN
    1980-09-25 14:23:00  167.487  176.885   ...         NaN      NaN
    1980-09-25 14:24:00  165.572  167.140   ...     182.478      NaN
    1980-09-25 14:25:00  170.480  173.723   ...     176.231  182.478
    1980-09-25 14:26:00  172.474  168.460   ...     183.917  176.231
    1980-09-25 14:27:00  166.448  177.623   ...     177.798  183.917
    1980-09-25 14:28:00  163.098  183.888   ...     165.469  177.798
    1980-09-25 14:29:00  163.544  167.487   ...     181.878  165.469
    1980-09-25 14:30:00  163.816  165.572   ...     184.502  181.878
    

     代码:

    # coding: utf-8
    
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
    from sklearn.model_selection import TimeSeriesSplit  # you have everything done for you
    from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import cross_val_score
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LassoCV, RidgeCV
    
    
    # for time-series cross-validation set 5 folds
    tscv = TimeSeriesSplit(n_splits=5)
    
    
    def mean_absolute_percentage_error(y_true, y_pred):
        return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
    
    
    def timeseries_train_test_split(X, y, test_size):
        """
            Perform train-test split with respect to time series structure
        """
    
        # get the index after which test set starts
        test_index = int(len(X) * (1 - test_size))
    
        X_train = X.iloc[:test_index]
        y_train = y.iloc[:test_index]
        X_test = X.iloc[test_index:]
        y_test = y.iloc[test_index:]
    
        return X_train, X_test, y_train, y_test
    
    
    def plotModelResults(model, X_train, X_test, y_train, y_test, plot_intervals=False, plot_anomalies=False):
        """
            Plots modelled vs fact values, prediction intervals and anomalies
    
        """
        prediction = model.predict(X_test)
    
        plt.figure(figsize=(15, 7))
        plt.plot(prediction, "g", label="prediction", linewidth=2.0)
        plt.plot(y_test.values, label="actual", linewidth=2.0)
    
        if plot_intervals:
            cv = cross_val_score(model, X_train, y_train,
                                 cv=tscv,
                                 scoring="neg_mean_absolute_error")
            mae = cv.mean() * (-1)
            deviation = cv.std()
    
            scale = 20
            lower = prediction - (mae + scale * deviation)
            upper = prediction + (mae + scale * deviation)
    
            plt.plot(lower, "r--", label="upper bond / lower bond", alpha=0.5)
            plt.plot(upper, "r--", alpha=0.5)
    
            if plot_anomalies:
                anomalies = np.array([np.NaN] * len(y_test))
                anomalies[y_test < lower] = y_test[y_test < lower]
                anomalies[y_test > upper] = y_test[y_test > upper]
                plt.plot(anomalies, "o", markersize=10, label="Anomalies")
    
        error = mean_absolute_percentage_error(prediction, y_test)
        plt.title("Mean absolute percentage error {0:.2f}%".format(error))
        plt.legend(loc="best")
        plt.tight_layout()
        plt.grid(True);
        plt.savefig("linear.png")
    
    
    def plotCoefficients(model, X_train):
        """
            Plots sorted coefficient values of the model
        """
        coefs = pd.DataFrame(model.coef_, X_train.columns)
        coefs.columns = ["coef"]
        coefs["abs"] = coefs.coef.apply(np.abs)
        coefs = coefs.sort_values(by="abs", ascending=False).drop(["abs"], axis=1)
    
        plt.figure(figsize=(20, 12))
        coefs.coef.plot(kind='bar')
        plt.grid(True, axis='y')
        plt.hlines(y=0, xmin=0, xmax=len(coefs), linestyles='dashed')
        plt.savefig("linear-cov.png")
    
    
    def code_mean(data, cat_feature, real_feature):
        """
        Returns a dictionary where keys are unique categories of the cat_feature,
        and values are means over real_feature
        """
        return dict(data.groupby(cat_feature)[real_feature].mean())
    
    
    def prepareData(series, lag_start, lag_end, test_size, target_encoding=False):
        """
            series: pd.DataFrame
                dataframe with timeseries
            lag_start: int
                initial step back in time to slice target variable
                example - lag_start = 1 means that the model
                          will see yesterday's values to predict today
            lag_end: int
                final step back in time to slice target variable
                example - lag_end = 4 means that the model
                          will see up to 4 days back in time to predict today
            test_size: float
                size of the test dataset after train/test split as percentage of dataset
            target_encoding: boolean
                if True - add target averages to the dataset
    
        """
        # copy of the initial dataset
        data = pd.DataFrame(series.copy())
        data.columns = ["y"]
    
        # lags of series
        for i in range(lag_start, lag_end):
            data["lag_{}".format(i)] = data.y.shift(i)
    
        # datetime features
        # data.index = data.index.to_datetime()
        data["hour"] = data.index.hour
        data["weekday"] = data.index.weekday
        data['is_weekend'] = data.weekday.isin([5, 6]) * 1
    
        if target_encoding:
            # calculate averages on train set only
            test_index = int(len(data.dropna()) * (1 - test_size))
            data['weekday_average'] = list(map(
                code_mean(data[:test_index], 'weekday', "y").get, data.weekday))
            data["hour_average"] = list(map(
                code_mean(data[:test_index], 'hour', "y").get, data.hour))
    
            # drop encoded variables
            # data.drop(["hour", "weekday"], axis=1, inplace=True)
    
        # train-test split
        y = data.dropna().y
        X = data.dropna().drop(['y'], axis=1)
        X_train, X_test, y_train, y_test = 
            timeseries_train_test_split(X, y, test_size=test_size)
    
        return X_train, X_test, y_train, y_test
    
    
    def plt_linear():
        data = pd.read_csv('raw_data.csv', usecols=['timestamp', 'count'])
        data['timestamp'] = pd.to_datetime(data['timestamp'])
        data.set_index("timestamp", drop=True, inplace=True)
        data.rename(columns={'count': 'y'}, inplace=True)
    
        X_train, X_test, y_train, y_test = 
            prepareData(data, lag_start=6, lag_end=25, test_size=0.3, target_encoding=True)
    
        scaler = StandardScaler()
        X_train_scaled = scaler.fit_transform(X_train)
        X_test_scaled = scaler.transform(X_test)
    
    
        # lr = LinearRegression()
        lr = LassoCV(cv=tscv)
        # lr = RidgeCV(cv=tscv)
        # lr.fit(X_train_scaled, y_train)
    
        """
        from xgboost import XGBRegressor
        lr = XGBRegressor()
        # lr = xgb.XGBRegressor(max_depth=5, learning_rate=0.1, n_estimators=160, silent=False, objective='reg:gamma')
        """
    
        lr.fit(X_train_scaled, y_train)
    
        """
        IMPORTANT
        Generally tree-based models poorly handle trends in data, compared to linear models, 
        so you have to detrend your series first or use some tricks to make the magic happen. 
        Ideally make the series stationary and then use XGBoost, for example, you can forecast 
        trend separately with a linear model and then add predictions from xgboost to get final forecast.
        """
    
        plotModelResults(lr, X_train=X_train_scaled, X_test=X_test_scaled,  y_train=y_train, y_test=y_test, plot_intervals=True, plot_anomalies=True)
        plotCoefficients(lr, X_train=X_train)
    
    
    plt_linear()
    

     

    可以看到相关系数!

    重构代码,使其可以预测未来:

    # coding: utf-8
    
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
    from sklearn.model_selection import TimeSeriesSplit
    from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import cross_val_score
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LassoCV, RidgeCV
    
    
    def mean_absolute_percentage_error(y_true, y_pred):
        return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
    
    
    def timeseries_train_test_split(X, y, test_size, predict_size):
        """
            Perform train-test split with respect to time series structure
        """
    
        total_size = len(X)
        # get the index after which test set starts
        test_index = int(total_size * (1 - test_size))
    
        X_train = X.iloc[:test_index]
        y_train = y.iloc[:test_index]
        X_test = X.iloc[test_index:total_size-predict_size]
        y_test = y.iloc[test_index:total_size-predict_size]
        X_predict = X.iloc[-predict_size:]
        y_predict = y.iloc[-predict_size:]
    
        return X_train, X_test, y_train, y_test, X_predict, y_predict
    
    
    def predict_future(lr, X_predict, y_predict, lag_start, lag_end, scaler):
        # for predict
        # not OK for abnormal real value
        y_predict[0:lag_start] = lr.predict(scaler.transform(X_predict.iloc[0:lag_start]))
        # last_line = X_test.iloc[-1]
        for i in range(lag_start, len(X_predict)):
        # for i in range(0, len(X_predict)):
            last_line = X_predict.iloc[i-1]
            index = X_predict.index[i]
            for j in range(lag_end-1, lag_start):
                X_predict.at[index, "lag_{}".format(j)] = last_line["lag_{}".format(j-1)]
            X_predict.at[index, "lag_{}".format(lag_start)] = y_predict[i-1]
            y_predict[i] = lr.predict(scaler.transform([X_predict.iloc[i]]))[0]
        return y_predict
    
    
    def plot_results(y_predict, y, intervals, img_filename, plot_intervals=False, plot_anomalies=False, extra_plot=None):
        """
            Plots modelled vs fact values, prediction intervals and anomalies
        """
        assert len(y_predict) == len(y)
        plt.figure(figsize=(15, 7))
        # plt.plot(y.index, y_predict, "g", label="prediction", linewidth=3.0)
        # plt.plot(y.index, y.values, label="actual", linewidth=1.0)
    
        plt.plot(y.index, y_predict, ls='-', c='#0072B2', label='predicted y')
        plt.plot(y.index, y.values, 'k.', label='y')
    
        if extra_plot is not None:
            # plt.plot(extra_plot.index, extra_plot.values, "y", label="future predict", linewidth=3.0)
            plt.plot(extra_plot.index, extra_plot.values, 'y', label='predicted y')
    
        if plot_intervals:
            lower = y_predict - intervals
            upper = y_predict + intervals
            # plt.plot(y.index, lower, "r--", label="upper bond / lower bond", alpha=0.5)
            # plt.plot(y.index, upper, "r--", alpha=0.5)
    
            plt.fill_between(y.index, lower, upper, color='#0072B2', alpha=0.2, label='predicted upper/lower y')
    
            if extra_plot is not None:
                # plt.plot(extra_plot.index, extra_plot.values-intervals, "r--", label="upper bond / lower bond", alpha=0.5)
                # plt.plot(extra_plot.index, extra_plot.values+intervals, "r--", alpha=0.5)
                plt.fill_between(extra_plot.index, extra_plot.values-intervals, extra_plot.values+intervals,
                                 color='#0072B2', alpha=0.2, label='predicted upper/lower y')
    
            if plot_anomalies:
                anomalies_lower = y[y < lower]
                anomalies_upper = y[y > upper]
                # plt.plot(anomalies_lower.index, anomalies_lower.values, "ro", markersize=10, label="Anomalies(+)")
                # plt.plot(anomalies_upper.index, anomalies_upper.values, "ro", markersize=10, label="Anomalies(-)")
                plt.plot(anomalies_lower.index, anomalies_lower.values, "rX", label='abnormal points')
                plt.plot(anomalies_upper.index, anomalies_upper.values, "rX")
    
        error = mean_absolute_percentage_error(y_predict, y)
        plt.title("Mean absolute percentage error {0:.2f}%".format(error))
        plt.legend(loc="best")
        plt.tight_layout()
        plt.grid(True);
        plt.savefig(img_filename)
    
    
    
    def plot_arg_importance(model, X_train):
        """
            Plots sorted coefficient values of the model
        """
        coefs = pd.DataFrame(model.coef_, X_train.columns)
        coefs.columns = ["coef"]
        coefs["abs"] = coefs.coef.apply(np.abs)
        coefs = coefs.sort_values(by="abs", ascending=False).drop(["abs"], axis=1)
    
        plt.figure(figsize=(20, 12))
        coefs.coef.plot(kind='bar')
        plt.grid(True, axis='y')
        plt.hlines(y=0, xmin=0, xmax=len(coefs), linestyles='dashed')
        plt.savefig("linear-cov.png")
    
    
    def code_mean(data, cat_feature, real_feature):
        """
        Returns a dictionary where keys are unique categories of the cat_feature,
        and values are means over real_feature
        """
        return dict(data.groupby(cat_feature)[real_feature].mean())
    
    
    def prepare_data(series, lag_start, lag_end, test_size, target_encoding=False, days_to_predict=1):
        """
            series: pd.DataFrame
                dataframe with timeseries
            lag_start: int
                initial step back in time to slice target variable
                example - lag_start = 1 means that the model
                          will see yesterday's values to predict today
            lag_end: int
                final step back in time to slice target variable
                example - lag_end = 4 means that the model
                          will see up to 4 days back in time to predict today
            test_size: float
                size of the test dataset after train/test split as percentage of dataset
            target_encoding: boolean
                if True - add target averages to the dataset
    
        """
        last_date = series["timestamp"].max()
    
        def make_future_date(periods, freq='D'):
            """Simulate the trend using the extrapolated generative model.
    
            Parameters
            ----------
            periods: Int number of periods to forecast forward.
            freq: Any valid frequency for pd.date_range, such as 'D' or 'M'.
            Returns
            -------
            pd.Dataframe that extends forward from the end of self.history for the
            requested number of periods.
            """
            dates = pd.date_range(
                start=last_date,
                periods=periods + 1,  # An extra in case we include start
                freq=freq)
            dates = dates[dates > last_date]  # Drop start if equals last_date
            return dates[:periods]  # Return correct number of periods
    
        predict_points = days_to_predict * 1440 # 1 day = 60*24 minutes
    
        future_dates = make_future_date(periods=predict_points, freq='T')
        df_future = pd.DataFrame({"timestamp": future_dates, "y": np.zeros(len(future_dates))})
    
        data = pd.concat([series, df_future])
        data.set_index("timestamp", drop=True, inplace=True)
        # data = pd.DataFrame(series.copy())
        # data.columns = ["y"]
        print(data[:30])
    
        # lags of series
        for i in range(lag_start, lag_end):
            data["lag_{}".format(i)] = data.y.shift(i)
        print(data[:30])
    
        # datetime features
        # data.index = data.index.to_datetime()
        data["hour"] = data.index.hour
        data["weekday"] = data.index.weekday
        data['is_weekend'] = data.weekday.isin([5, 6]) * 1
    
        if target_encoding:
            # calculate averages on train set only
            test_index = int(len(data.dropna()) * (1 - test_size))
            data['weekday_average'] = list(map(
                code_mean(data[:test_index], 'weekday', "y").get, data.weekday))
            data["hour_average"] = list(map(
                code_mean(data[:test_index], 'hour', "y").get, data.hour))
    
            # drop encoded variables
            # data.drop(["hour", "weekday"], axis=1, inplace=True)
    
        # train-test split
        y = data.dropna().y
        X = data.dropna().drop(['y'], axis=1)
        X_train, X_test, y_train, y_test, X_predict, y_predict = 
            timeseries_train_test_split(X, y, test_size=test_size, predict_size=predict_points)
    
        return X_train, X_test, y_train, y_test, X_predict, y_predict
    
    
    def calculate_intevals(lr, X_train, y_train, tscv):
        cv = cross_val_score(lr, X_train, y_train,
                             cv=tscv,
                             scoring="neg_mean_absolute_error")
        mae = cv.mean() * (-1)
        deviation = cv.std()
        scale = 30
        return  mae + scale * deviation
    
    
    def plt_linear():
        data = pd.read_csv('raw_data.csv', usecols=['timestamp', 'count'])
        # input format
        data['timestamp'] = pd.to_datetime(data['timestamp'])
        data = data.sort_values('timestamp')
        data.rename(columns={'count': 'y'}, inplace=True)
    
        lag_start = 1
        lag_end = 100
        X_train, X_test, y_train, y_test, X_predict, y_predict = 
            prepare_data(data, lag_start=lag_start, lag_end=lag_end, test_size=0.3, target_encoding=True)
    
        scaler = StandardScaler()
        X_train_scaled = scaler.fit_transform(X_train)
        X_test_scaled = scaler.transform(X_test)
    
        # for time-series cross-validation set 5 folds
        tscv = TimeSeriesSplit(n_splits=5)
    
        # lr = LinearRegression()
        lr = LassoCV(cv=tscv)
        # lr = RidgeCV(cv=tscv)
    
        lr.fit(X_train_scaled, y_train)
    
        intervals = calculate_intevals(lr, X_train, y_train, tscv)
    
        """
        y_test_predict = lr.predict(X_test_scaled)
        plot_results(y_predict=y_test_predict, y=y_test, intervals=intervals, img_filename="linear-test-result.png", plot_intervals=True, plot_anomalies=True)
        """
    
        y2 = lr.predict(np.concatenate((X_train_scaled, X_test_scaled)))
        y = pd.concat([y_train, y_test])
        # plot_results(y_predict=y2, y=y, intervals=intervals, img_filename="linear-all-result.png", plot_intervals=True, plot_anomalies=True)
    
        y_future = predict_future(lr, X_predict, y_predict, lag_start, lag_end, scaler)
        plot_results(y_predict=y2, y=y, intervals=intervals, img_filename="linear-all.png", plot_intervals=True, plot_anomalies=True, extra_plot=y_future)
    
        plot_arg_importance(lr, X_train=X_train)
    
    
    plt_linear()
    

    绘图:

    尤其关键的是,lag_start, lag_end参数,如果lag_start=1,则表示使用前一个时刻输入,会导致模型过拟合,因此上面设置了lag_start=60表示使用一个小时前的数据来预测,防止过拟合。

    来lag_start=1的效果:

    可以看到,前一个时刻数据值的重要性!因此,最后做趋势预测的时候出现了重大失误,模型过拟合了。

    bug修复:

    # coding: utf-8
    
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
    from sklearn.model_selection import TimeSeriesSplit
    from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import cross_val_score
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LassoCV, RidgeCV
    from sklearn.ensemble import GradientBoostingRegressor
    
    
    
    def mean_absolute_percentage_error(y_true, y_pred):
        return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
    
    
    def predict_future(lr, X_predict, y_predict, lag_start, lag_end, scaler):
        # for predict
        y_predict[0:lag_start] = lr.predict(scaler.transform(X_predict.iloc[0:lag_start]))
        for i in range(lag_start, len(X_predict)):
            last_line = X_predict.iloc[i-1]
            index = X_predict.index[i]
            for j in range(lag_end-1, lag_start, -1):
                X_predict.at[index, "lag_{}".format(j)] = last_line["lag_{}".format(j-1)]
            X_predict.at[index, "lag_{}".format(lag_start)] = y_predict[i-1]
            y_predict[i] = lr.predict(scaler.transform([X_predict.iloc[i]]))[0]
        return y_predict
    
    
    def plot_results(y_predict, y, intervals, img_filename, plot_intervals=False, plot_anomalies=False, extra_plot=None):
        """
            Plots modelled vs fact values, prediction intervals and anomalies
        """
        assert len(y_predict) == len(y)
        plt.figure(figsize=(15, 7))
        # plt.plot(y.index, y_predict, "g", label="prediction", linewidth=3.0)
        # plt.plot(y.index, y.values, label="actual", linewidth=1.0)
    
        plt.plot(y.index, y_predict, ls='-', c='#0072B2', label='predicted y')
        plt.plot(y.index, y.values, 'k.', label='y')
    
        if extra_plot is not None:
            # plt.plot(extra_plot.index, extra_plot.values, "y", label="future predict", linewidth=3.0)
            plt.plot(extra_plot.index, extra_plot.values, 'y', label='predicted y')
    
        if plot_intervals:
            lower = y_predict - intervals
            upper = y_predict + intervals
            # plt.plot(y.index, lower, "r--", label="upper bond / lower bond", alpha=0.5)
            # plt.plot(y.index, upper, "r--", alpha=0.5)
    
            plt.fill_between(y.index, lower, upper, color='#0072B2', alpha=0.2, label='predicted upper/lower y')
    
            if extra_plot is not None:
                # plt.plot(extra_plot.index, extra_plot.values-intervals, "r--", label="upper bond / lower bond", alpha=0.5)
                # plt.plot(extra_plot.index, extra_plot.values+intervals, "r--", alpha=0.5)
                plt.fill_between(extra_plot.index, extra_plot.values-intervals, extra_plot.values+intervals,
                                 color='#0072B2', alpha=0.2, label='predicted upper/lower y')
    
            if plot_anomalies:
                anomalies_lower = y[y < lower]
                anomalies_upper = y[y > upper]
                # plt.plot(anomalies_lower.index, anomalies_lower.values, "ro", markersize=10, label="Anomalies(+)")
                # plt.plot(anomalies_upper.index, anomalies_upper.values, "ro", markersize=10, label="Anomalies(-)")
                plt.plot(anomalies_lower.index, anomalies_lower.values, "rX", label='abnormal points')
                plt.plot(anomalies_upper.index, anomalies_upper.values, "rX")
    
        error = mean_absolute_percentage_error(y_predict, y)
        plt.title("Mean absolute percentage error {0:.2f}%".format(error))
        plt.legend(loc="best")
        plt.tight_layout()
        plt.grid(True)
        plt.savefig(img_filename)
    
    
    
    def plot_arg_importance(model, X_train, img_filename="linear-cov.png"):
        """
            Plots sorted coefficient values of the model
        """
        coefs = pd.DataFrame(model.coef_, X_train.columns)
        coefs.columns = ["coef"]
        coefs["abs"] = coefs.coef.apply(np.abs)
        coefs = coefs.sort_values(by="abs", ascending=False).drop(["abs"], axis=1)
    
        plt.figure(figsize=(20, 12))
        coefs.coef.plot(kind='bar')
        plt.grid(True, axis='y')
        plt.hlines(y=0, xmin=0, xmax=len(coefs), linestyles='dashed')
        plt.savefig(img_filename)
    
    
    def code_mean(data, cat_feature, real_feature):
        """
        Returns a dictionary where keys are unique categories of the cat_feature,
        and values are means over real_feature
        """
        return dict(data.groupby(cat_feature)[real_feature].mean())
    
    
    def prepare_data(series, lag_start, lag_end, test_size, target_encoding=False, days_to_predict=2):
        """
            series: pd.DataFrame
                dataframe with timeseries
            lag_start: int
                initial step back in time to slice target variable
                example - lag_start = 1 means that the model
                          will see yesterday's values to predict today
            lag_end: int
                final step back in time to slice target variable
                example - lag_end = 4 means that the model
                          will see up to 4 days back in time to predict today
            test_size: float
                size of the test dataset after train/test split as percentage of dataset
            target_encoding: boolean
                if True - add target averages to the dataset
    
        """
        last_date = series["timestamp"].max()
    
        def make_future_date(periods, freq='D'):
            """Simulate the trend using the extrapolated generative model.
    
            Parameters
            ----------
            periods: Int number of periods to forecast forward.
            freq: Any valid frequency for pd.date_range, such as 'D' or 'M'.
            Returns
            -------
            pd.Dataframe that extends forward from the end of self.history for the
            requested number of periods.
            """
            dates = pd.date_range(
                start=last_date,
                periods=periods + 1,  # An extra in case we include start
                freq=freq)
            dates = dates[dates > last_date]  # Drop start if equals last_date
            return dates[:periods]  # Return correct number of periods
    
        predict_points = days_to_predict * 1440 # 1 day = 60*24 minutes
    
        future_dates = make_future_date(periods=predict_points, freq='T')
        df_future = pd.DataFrame({"timestamp": future_dates, "y": np.zeros(len(future_dates))})
    
        data = pd.concat([series, df_future])
        data.set_index("timestamp", drop=True, inplace=True)
        # data = pd.DataFrame(series.copy())
        # data.columns = ["y"]
        # print(data[:30])
    
        # lags of series
        for i in range(lag_start, lag_end):
            data["lag_{}".format(i)] = data.y.shift(i)
        # print(data[:30])
    
        # datetime features
        # data.index = data.index.to_datetime()
        data["hour"] = data.index.hour
        data["weekday"] = data.index.weekday
        data['is_weekend'] = data.weekday.isin([5, 6]) * 1
    
        test_index = int(len(series) * (1 - test_size))
        if target_encoding:
            # calculate averages on train set only
            data['weekday_average'] = list(map(
                code_mean(data[:test_index], 'weekday', "y").get, data.weekday))
            data["hour_average"] = list(map(
                code_mean(data[:test_index], 'hour', "y").get, data.hour))
    
            # drop encoded variables
            # data.drop(["hour", "weekday"], axis=1, inplace=True)
    
        # train-test split
        y = data.dropna().y
        X = data.dropna().drop(['y'], axis=1)
    
    
        total_size = len(X)
        # get the index after which test set starts
        X_train = X.iloc[:test_index]
        y_train = y.iloc[:test_index]
        X_test = X.iloc[test_index:total_size-predict_points]
        y_test = y.iloc[test_index:total_size-predict_points]
        X_predict = X.iloc[-predict_points:]
        y_predict = y.iloc[-predict_points:]
    
        return X_train, X_test, y_train, y_test, X_predict, y_predict
    
    
    def mean_absolute_error(y_true, y_pred):
        abs_err = np.abs(y_true-y_pred)
        return np.mean(abs_err), np.std(abs_err)
    
    
    def calculate_intervals2(y_true, y_pred, scale):
        mae, std = mean_absolute_error(y_true, y_pred)
        return mae + scale * std
    
    
    def calculate_intervals(lr, X_train, y_train, tscv, scale):
        cv = cross_val_score(lr, X_train, y_train,
                             cv=tscv,
                             scoring="neg_mean_squared_error")
        mae = cv.mean() * (-1)
        deviation = cv.std()
        return mae + scale * deviation
    
    
    def linear_predict(data_frame, interval_scale=30, lag_start=60, lag_end=100, days_to_predict=2):
        """
         predict time series data using linear model.
    
        :param data_frame:  input data frame. Must have timestamp and y columns. Also set index with timestamp.
        :param interval_scale:  interval range scale.
        :param lag_start:
                initial step back in time to slice target variable
                example - lag_start = 1 means that the model
                          will see yesterday's values to predict today
        :param lag_end:
                final step back in time to slice target variable
                example - lag_end = 4 means that the model
                          will see up to 4 days back in time to predict today
        :param days_to_predict: predicted days in future/
        :return:
            history_predict: history predicted value (pandas.Series)
            y_future: predicted value for future (pandas.Series)
            intervals: upper and lower range (float).
        """
        assert "timestamp" in data_frame.columns
        assert "y" in data_frame.columns
    
        X_train, X_test, y_train, y_test, X_predict, y_predict = 
            prepare_data(data_frame, lag_start=lag_start, lag_end=lag_end, test_size=0.3, target_encoding=True, days_to_predict=days_to_predict)
    
        scaler = StandardScaler()
        X_train_scaled = scaler.fit_transform(X_train)
        X_test_scaled = scaler.transform(X_test)
    
        # for time-series cross-validation set 5 folds
        tscv = TimeSeriesSplit(n_splits=5)
    
        # lr = LinearRegression()
        lr = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=1, random_state=666)
        # lr = LassoCV(cv=tscv)
        # lr = RidgeCV(cv=tscv)
    
        lr.fit(X_train_scaled, y_train)
        # plot_arg_importance(lr, X_train=X_train, img_filename="linear-cov.png")
    
        y_future = predict_future(lr, X_predict, y_predict, lag_start, lag_end, scaler)
    
        y = lr.predict(np.concatenate((X_train_scaled, X_test_scaled)))
        y_history = pd.concat([y_train, y_test])
    
        # intervals = calculate_intervals(lr, X_train, y_train, tscv, scale=interval_scale)
        intervals = calculate_intervals2(y_history, y, interval_scale)
    
        # anomalies_lower = y_history[y_history<y-intervals]
        # anomalies_upper = y_history[y_history>y+intervals]
        assert len(y_history.index) == len(y)
    
        return pd.Series(data=y, index=y_history.index, name="history_predict"), y_future, intervals
    
    
    def get_anoms(y_real, y_predict, intervals, lower_ratio=1.0, upper_ratio=1.0):
        """
         calculat anomal point using predicted value and interval
        :param y_real:  real value (pandas.Series)
        :param y_predict: predicted value (pandas.Series)
        :param intervals:  upper and lower bound range (float)
        :param lower_ratio: lower ratio you want to scale
        :param upper_ratio:  upper ratio you want scale
        :return:
            anoms_lower, anoms_upper (pandas.Series)
        """
        anomalies_lower_index,anomalies_lower_val = [], []
        anomalies_upper_index,anomalies_upper_val = [], []
        for timestamp, expect_val in zip(y_predict.index, y_predict.values):
            real_val = y_real.loc[timestamp]
            if (expect_val-intervals) * lower_ratio > real_val:
                anomalies_lower_index.append(timestamp)
                anomalies_lower_val.append(real_val)
            if (expect_val+intervals) * upper_ratio < real_val:
                anomalies_upper_index.append(timestamp)
                anomalies_upper_val.append(real_val)
        return pd.Series(data=anomalies_lower_val, index=anomalies_lower_index),
               pd.Series(data=anomalies_upper_val, index=anomalies_upper_index)
    
    
    def plot_history_and_future(y_predict, y_real, intervals, anomalies_lower, anomalies_upper, predicted_future, img_filename, need_lower=True):
        """
            Plots modelled vs fact values, prediction intervals and anomalies
        """
        assert len(y_predict) < len(y_real)
        plt.figure(figsize=(15, 7))
    
        plt.plot(y_predict.index, y_predict.values, ls='-', c='#0072B2', label='predicted y')
        plt.plot(y_real.index, y_real.values, 'k.', label='y')
        if need_lower:
            plt.fill_between(y_predict.index, y_predict.values - intervals, y_predict.values + intervals, color='#0072B2', alpha=0.2, label='predicted upper/lower y')
        else:
            plt.fill_between(y_predict.index, 0, y_predict.values + intervals, color='#0072B2', alpha=0.2, label='predicted upper/lower y')
    
        plt.plot(predicted_future.index, predicted_future.values, 'y', label='predicted y')
        if need_lower:
            plt.fill_between(predicted_future.index, predicted_future.values-intervals, predicted_future.values+intervals,
                         color='#0072B2', alpha=0.2)
        else:
            plt.fill_between(predicted_future.index, 0, predicted_future.values+intervals,
                             color='#0072B2', alpha=0.2)
    
        if need_lower:
            plt.plot(anomalies_lower.index, anomalies_lower.values, "rX", label='abnormal points')
            plt.plot(anomalies_upper.index, anomalies_upper.values, "rX")
        else:
            plt.plot(anomalies_upper.index, anomalies_upper.values, "rX", label="abnormal points")
    
        error = mean_absolute_percentage_error(y_predict, y_real)
        plt.title("Mean absolute percentage error {0:.2f}%".format(error))
        plt.legend(loc="best")
        plt.tight_layout()
        plt.grid(True)
        plt.savefig(img_filename)
    
    
    if __name__ == "__main__":
        data = pd.read_csv('raw_data.csv', usecols=['timestamp', 'count'])
        # input format
        data['timestamp'] = pd.to_datetime(data['timestamp'])
        data = data.sort_values('timestamp')
        data.rename(columns={'count': 'y'}, inplace=True)
        data.set_index("timestamp", drop=False, inplace=True)
    
        y_predict, y_future, intervals = linear_predict(data, interval_scale=5, lag_start=60, lag_end=100, days_to_predict=3)
    
        anomalies_lower, anomalies_upper = get_anoms(data['y'], y_predict, intervals)
    
        plot_history_and_future(y_predict=y_predict, y_real=data['y'], intervals=intervals, anomalies_lower=anomalies_lower,
                                anomalies_upper=anomalies_upper, predicted_future=y_future, img_filename="linear.png", need_lower=True)  

    修复了-1的问题:

    for j in range(lag_end-1, lag_start, -1):

    lag的bug。

    此外使用梯度提升树模型做回归,目前看效果略好于其他模型,线性回归模型很健壮,但是在特殊情况下会出现网络流预测值为为负数的情形,根因还没有找到,而梯度提升树没有这个问题,但是GBT在数据平稳,预测应该是常数的时候会出现上升情形(线性回归也有这个问题,WHY???)。如下图所示数据情形:

  • 相关阅读:
    docker搭建本地仓库并制作自己的镜像
    docker命令及操作
    从零开始学android开发-项目打包发布
    从零开始学android开发-adt-bundle-eclipse下的修改android app名称
    从零开始学android开发-项目重命名
    Android Studio系列教程一--下载与安装
    Axure RP 7.0注册码
    MVC网站发布常见问题
    无间断滚动的新闻文章列表
    @HTML
  • 原文地址:https://www.cnblogs.com/bonelee/p/9904956.html
Copyright © 2020-2023  润新知