from fbprophet.diagnostics import performance_metrics
df_p = performance_metrics(df_cv)
df_p.head()
horizon | mse | rmse | mae | mape | coverage | |
---|---|---|---|---|---|---|
3297 | 37 days | 0.481970 | 0.694241 | 0.502930 | 0.058371 | 0.673367 |
35 | 37 days | 0.480991 | 0.693535 | 0.502007 | 0.058262 | 0.675879 |
2207 | 37 days | 0.480936 | 0.693496 | 0.501928 | 0.058257 | 0.675879 |
2934 | 37 days | 0.481455 | 0.693870 | 0.502999 | 0.058393 | 0.675879 |
393 | 37 days | 0.483990 | 0.695694 | 0.503418 | 0.058494 | 0.675879 |
mape平均绝对百分误差
- 定义
-
def evalmape(preds, dtrain): gaps = dtrain.get_label() err = abs(gaps-preds)/gaps err[(gaps==0)] = 0 err = np.mean(err)*100 return 'error',err