• tensorflow 实现逻辑回归——原以为TensorFlow不擅长做线性回归或者逻辑回归,原来是这么简单哇!


    实现的是预测 低 出生 体重 的 概率。
    尼克·麦克卢尔(Nick McClure). TensorFlow机器学习实战指南 (智能系统与技术丛书) (Kindle 位置 1060-1061). Kindle 版本.

    # Logistic Regression
    #----------------------------------
    #
    # This function shows how to use TensorFlow to
    # solve logistic regression.
    # y = sigmoid(Ax + b)
    #
    # We will use the low birth weight data, specifically:
    #  y = 0 or 1 = low birth weight
    #  x = demographic and medical history data
    
    import matplotlib.pyplot as plt
    import numpy as np
    import tensorflow as tf
    import requests
    from tensorflow.python.framework import ops
    import os.path
    import csv
    
    
    ops.reset_default_graph()
    
    # Create graph
    sess = tf.Session()
    
    ###
    # Obtain and prepare data for modeling
    ###
    
    # Set name of data file
    birth_weight_file = 'birth_weight.csv'
    
    # Download data and create data file if file does not exist in current directory
    if not os.path.exists(birth_weight_file):
        birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat'
        birth_file = requests.get(birthdata_url)
        birth_data = birth_file.text.split('
    ')
        birth_header = birth_data[0].split('	')
        birth_data = [[float(x) for x in y.split('	') if len(x)>=1] for y in birth_data[1:] if len(y)>=1]
        with open(birth_weight_file, 'w', newline='') as f:
            writer = csv.writer(f)
            writer.writerow(birth_header)
            writer.writerows(birth_data)
            f.close()
    
    # Read birth weight data into memory
    birth_data = []
    with open(birth_weight_file, newline='') as csvfile:
         csv_reader = csv.reader(csvfile)
         birth_header = next(csv_reader)
         for row in csv_reader:
             birth_data.append(row)
    
    birth_data = [[float(x) for x in row] for row in birth_data]
    
    # Pull out target variable
    y_vals = np.array([x[0] for x in birth_data])
    # Pull out predictor variables (not id, not target, and not birthweight)
    x_vals = np.array([x[1:8] for x in birth_data])
    
    # Set for reproducible results
    seed = 99
    np.random.seed(seed)
    tf.set_random_seed(seed)
    
    # Split data into train/test = 80%/20%
    train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
    test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
    x_vals_train = x_vals[train_indices]
    x_vals_test = x_vals[test_indices]
    y_vals_train = y_vals[train_indices]
    y_vals_test = y_vals[test_indices]
    
    # Normalize by column (min-max norm)
    def normalize_cols(m):
        col_max = m.max(axis=0)
        col_min = m.min(axis=0)
        return (m-col_min) / (col_max - col_min)
        
    x_vals_train = np.nan_to_num(normalize_cols(x_vals_train))
    x_vals_test = np.nan_to_num(normalize_cols(x_vals_test))
    
    ###
    # Define Tensorflow computational graph¶
    ###
    
    # Declare batch size
    batch_size = 25
    
    # Initialize placeholders
    x_data = tf.placeholder(shape=[None, 7], dtype=tf.float32)
    y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
    
    # Create variables for linear regression
    A = tf.Variable(tf.random_normal(shape=[7,1]))
    b = tf.Variable(tf.random_normal(shape=[1,1]))
    
    # Declare model operations
    model_output = tf.add(tf.matmul(x_data, A), b)
    
    # Declare loss function (Cross Entropy loss)
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=model_output, labels=y_target))
    
    # Declare optimizer
    my_opt = tf.train.GradientDescentOptimizer(0.01)
    train_step = my_opt.minimize(loss)
    
    ###
    # Train model
    ###
    
    # Initialize variables
    init = tf.global_variables_initializer()
    sess.run(init)
    
    # Actual Prediction
    prediction = tf.round(tf.sigmoid(model_output))
    predictions_correct = tf.cast(tf.equal(prediction, y_target), tf.float32)
    accuracy = tf.reduce_mean(predictions_correct)
    
    # Training loop
    loss_vec = []
    train_acc = []
    test_acc = []
    for i in range(15000):
        rand_index = np.random.choice(len(x_vals_train), size=batch_size)
        rand_x = x_vals_train[rand_index]
        rand_y = np.transpose([y_vals_train[rand_index]])
        sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
    
        temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
        loss_vec.append(temp_loss)
        temp_acc_train = sess.run(accuracy, feed_dict={x_data: x_vals_train, y_target: np.transpose([y_vals_train])})
        train_acc.append(temp_acc_train)
        temp_acc_test = sess.run(accuracy, feed_dict={x_data: x_vals_test, y_target: np.transpose([y_vals_test])})
        test_acc.append(temp_acc_test)
        if (i+1)%300==0:
            print('Loss = ' + str(temp_loss))
            
    
    ###
    # Display model performance
    ###
    
    # Plot loss over time
    plt.plot(loss_vec, 'k-')
    plt.title('Cross Entropy Loss per Generation')
    plt.xlabel('Generation')
    plt.ylabel('Cross Entropy Loss')
    plt.show()
    
    # Plot train and test accuracy
    plt.plot(train_acc, 'k-', label='Train Set Accuracy')
    plt.plot(test_acc, 'r--', label='Test Set Accuracy')
    plt.title('Train and Test Accuracy')
    plt.xlabel('Generation')
    plt.ylabel('Accuracy')
    plt.legend(loc='lower right')
    plt.show()
    

     

  • 相关阅读:
    闰年判断
    加法乘法模拟
    unordered_set构造 count_if函数
    写了又忘的层序遍历
    SQL Server 2000+ MS WIN2003群集服务配置
    解决IE8在vs2005下不能调试的问题.
    java邮件发送小实例
    异常:org.hibernate.AnnotationException: @Temporal should only be set on a java.util.Date or java.util.Calendar property
    异常:IOException while loading persisted sessions: java.io.EOFException
    异常:org.hibernate.cache.NoCachingEnabledException: Secondlevel cache is not enabled for usage [hibernate.cache.use_second_level_cache | hibernate.cach
  • 原文地址:https://www.cnblogs.com/bonelee/p/8996496.html
Copyright © 2020-2023  润新知