Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted array: [-10,-3,0,5,9], One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST: 0 / -3 9 / / -10 5
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def sortedArrayToBST(self, nums): """ :type nums: List[int] :rtype: TreeNode """ def build_bst(arr, i, j): if i > j: return None mid = (i+j)>>1 node = TreeNode(arr[mid]) node.left = build_bst(arr, i, mid-1) node.right = build_bst(arr, mid+1, j) return node return build_bst(nums, 0, len(nums)-1)
迭代解法,本质上是先序遍历:
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def sortedArrayToBST(self, nums): """ :type nums: List[int] :rtype: TreeNode """ if not nums: return None q = [(0, len(nums)-1)] ans = TreeNode(0) nodes = [ans] while q: i, j = q.pop() mid = (i+j)>>1 node = nodes.pop() node.val = nums[mid] if mid+1 <= j: node.right = TreeNode(0) q.append((mid+1, j)) nodes.append(node.right) if mid-1 >= i: node.left = TreeNode(0) q.append((i, mid-1)) nodes.append(node.left) return ans