• 最大信息系数——检测变量之间非线性相关性


    https://blog.csdn.net/qtlyx/article/details/50780400

    最后的效果就是这样的。很明显可以看到,左下角那个有点像三角函数的关系,Pearson系数(就是线性相关系数)为0,而MIC则有0.8。

    摘自:http://tech.ifeng.com/a/20180323/44917506_0.shtml

    最大信息系数

    最大信息系数(MIC)于 2011 年提出,它是用于检测变量之间非线性相关性的最新方法。用于进行 MIC 计算的算法将信息论和概率的概念应用于连续型数据。

    深入细节

    由克劳德·香农于 20 世纪中叶开创的信息论是数学中一个引人注目的领域。

    信息论中的一个关键概念是熵——这是一个衡量给定概率分布的不确定性的度量。概率分布描述了与特定事件相关的一系列给定结果的概率。

    概率分布的熵是「每个可能结果的概率乘以其对数后的和」的负值

    为了理解其工作原理,让我们比较下面两个概率分布:

    X 轴标明了可能的结果;Y 轴标明了它们各自的概率

    左侧是一个常规六面骰子结果的概率分布;而右边的六面骰子不那么均匀。

    从直觉上来说,你认为哪个的熵更高呢?哪个骰子结果的不确定性更大?让我们来计算它们的熵,看看答案是什么。

    entropy <- function(x){
     pr <- prop.table(table(x))
     H <- sum(pr * log(pr,2))
     return(-H)
    }
    dice1 <- 1:6
    dice2 <- c(1,1,1,1,2:6)
    entropy(dice1) # --> 2.585
    entropy(dice2) # --> 2.281

    不出所料,常规骰子的熵更高。这是因为每种结果的可能性都一样,所以我们不会提前知道结果偏向哪个。但是,非常规的骰子有所不同——某些结果的发生概率远大于其它结果——所以它的结果的不确定性也低一些。

    这么一来,我们就能明白,当每种结果的发生概率相同时,它的熵最高。而这种概率分布也就是传说中的「均匀」分布。

    交叉熵是熵的一个拓展概念,它引入了第二个变量的概率分布。

    crossEntropy <- function(x,y){
     prX <- prop.table(table(x))
     prY <- prop.table(table(y))
     H <- sum(prX * log(prY,2))
     return(-H)
    }

    两个相同概率分布之间的交叉熵等于其各自单独的熵。但是对于两个不同的概率分布,它们的交叉熵可能跟各自单独的熵有所不同。

    这种差异,或者叫「散度」可以通过 KL 散度(Kullback-Leibler divergence)量化得出。

    两概率分布 X 与 Y 的 KL 散度如下:

    概率分布 X 与 Y 的 KL 散度等于它们的交叉熵减去 X 的熵

    KL 散度的最小值为 0,仅当两个分布相同。

    KL_divergence <- function(x,y){
     kl <- crossEntropy(x,y) - entropy(x)
     return(kl)
    }

    为了发现变量具有相关性,KL 散度的用途之一是计算两个变量的互信息(MI)。

    互信息可以定义为「两个随机变量的联合分布和边缘分布之间的 KL 散度」。如果二者相同,MI 值取 0。如若不同,MI 值就为一个正数。二者之间的差异越大,MI 值就越大。

    为了加深理解,我们首先简单回顾一些概率论的知识。

    变量 X 和 Y 的联合概率就是二者同时发生的概率。例如,如果你抛掷两枚硬币 X 和 Y,它们的联合分布将反映抛掷结果的概率。假设你抛掷硬币 100 次,得到「正面、正面」的结果 40 次。联合分布将反映如下:

    P(X=H, Y=H) = 40/100 = 0.4

    jointDist <- function(x,y){
     N <- length(x)
     u <- unique(append(x,y))
     joint <- c()
     for(i in u){
       for(j in u){
         f <- x[paste0(x,y) == paste0(i,j)]
         joint <- append(joint, length(f)/N)
       }
     }
     return(joint)
    }

    边缘分布是指不考虑其它变量而只关注某一特定变量的概率分布。假设两变量独立,二者边缘概率的乘积即为二者同时发生的概率。仍以抛硬币为例,假如抛掷结果是 50 次正面和 50 次反面,它们的边缘分布如下:

    P(X=H) = 50/100 = 0.5 ; P(Y=H) = 50/100 = 0.5

    P(X=H) × P(Y=H) = 0.5 × 0.5 = 0.25

    marginalProduct <- function(x,y){
     N <- length(x)
     u <- unique(append(x,y))
     marginal <- c()
     for(i in u){
       for(j in u){
         fX <- length(x[x == i]) / N
         fY <- length(y[y == j]) / N
         marginal <- append(marginal, fX * fY)
       }
     }
     return(marginal)
    }

    现在让我们回到抛硬币的例子。如果两枚硬币相互独立,边缘分布的乘积表示每个结果可能发生的概率,而联合分布则为实际得到的结果的概率。

    如果两硬币完全独立,它们的联合概率在数值上(约)等于边缘分布的乘积。若只是部分独立,此处就存在散度。

    这个例子中,P(X=H,Y=H) > P(X=H) × P(Y=H)。这表明两硬币全为正面的概率要大于它们的边缘分布之积。

    联合分布和边缘分布乘积之间的散度越大,两个变量之间相关的可能性就越大。两个变量的互信息定义了散度的度量方式。

    X 和 Y 的互信息等于「二者边缘分布积和的联合分布的 KL 散度」

    mutualInfo <- function(x,y){
     joint <- jointDist(x,y)
     marginal <- marginalProduct(x,y)
     Hjm <- - sum(joint[marginal > 0] * log(marginal[marginal > 0],2))
     Hj <- - sum(joint[joint > 0] * log(joint[joint > 0],2))
     return(Hjm - Hj)
    }

    此处的一个重要假设就是概率分布是离散的。那么我们如何把这些概念应用到连续的概率分布呢?

    分箱算法

    其中一种方法是量化数据(使变量离散化)。这是通过分箱算法(bining)实现的,它能将连续的数据点分配对应的离散类别。

    此方法的关键问题是到底要使用多少「箱子(bin)」。幸运的是,首次提出 MIC 的论文给出了建议:穷举!

    也就是说,去尝试不同的「箱子」个数并观测哪个会在变量间取到最大的互信息值。不过,这提出了两个挑战:

    1. 要试多少个箱子呢?理论上你可以将变量量化到任意间距值,可以使箱子尺寸越来越小。

    2. 互信息对所用的箱子数很敏感。你如何公平比较不同箱子数目之间的 MI 值?

    第一个挑战从理论上讲是不能做到的。但是,论文作者提供了一个启发式解法(也就是说,解法不完美,但是十分接近完美解法)。他们也给出了可试箱子个数的上限。

    最大可用箱子个数由样本数 N 决定

    至于如何公平比较取不同箱子数对 MI 值的影响,有一个简单的做法……就是归一化!这可以通过将每个 MI 值除以在特定箱子数组合上取得的理论最大值来完成。我们要采用的是产生最大归一化 MI 总值的箱子数组合。

    互信息可以通过除以最小的箱子数的对数来归一化

    最大的归一化互信息就是 X 和 Y 的最大信息系数(MIC)。我们来看看一些估算两个连续变量的 MIC 的代码。

    MIC <- function(x,y){
     N <- length(x)
     maxBins <- ceiling(N ** 0.6)
     MI <- c()
     for(i in 2:maxBins) {
       for (j in 2:maxBins){
         if(i * j > maxBins){
           next
         }
         Xbins <- i; Ybins <- j
         binnedX <-cut(x, breaks=Xbins, labels = 1:Xbins)
         binnedY <-cut(y, breaks=Ybins, labels = 1:Ybins)
         MI_estimate <- mutualInfo(binnedX,binnedY)
         MI_normalized <- MI_estimate / log(min(Xbins,Ybins),2)
         MI <- append(MI, MI_normalized)
     }
    }
     return(max(MI))
    }
    x <- runif(100,-10,10)
    y <- x**2 + rnorm(100,0,10)
    MIC(x,y) # --> 0.751

    以上代码是对原论文中方法的简化。更接近原作的算法实现可以参考 R package minerva(https://cran.r-project.org/web/packages/minerva/index.html)。

    在 Python 中的实现请参考 minepy module(https://minepy.readthedocs.io/en/latest/)。

    MIC 能够表示各种线性和非线性的关系,并已得到广泛应用。它的值域在 0 和 1 之间,值越高表示相关性越强。

  • 相关阅读:
    CVE-2020-0796 SMB远程代码执行漏洞复现
    SMTP用户枚举原理简介及相关工具
    sqli-labs全通关payload
    ASCII码表
    查看GitHub的历史
    npm安装vue创建一个helloworld程序
    JavaWeb12-Session
    JavaWeb11-Cookie
    JavaWeb10-Servlet实现随机产生图片验证码
    JavaWeb09-Servlet实现下载文件
  • 原文地址:https://www.cnblogs.com/bonelee/p/8651719.html
Copyright © 2020-2023  润新知