• tflearn mnist 使用MLP 全连接网络一般都会加dropout哇


    # -*- coding: utf-8 -*-
    
    """ Deep Neural Network for MNIST dataset classification task.
    References:
        Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based
        learning applied to document recognition." Proceedings of the IEEE,
        86(11):2278-2324, November 1998.
    Links:
        [MNIST Dataset] http://yann.lecun.com/exdb/mnist/
    """
    from __future__ import division, print_function, absolute_import
    
    import tflearn
    
    # Data loading and preprocessing
    import tflearn.datasets.mnist as mnist
    X, Y, testX, testY = mnist.load_data(one_hot=True)
    
    # Building deep neural network
    input_layer = tflearn.input_data(shape=[None, 784])
    dense1 = tflearn.fully_connected(input_layer, 64, activation='tanh',
                                     regularizer='L2', weight_decay=0.001)
    dropout1 = tflearn.dropout(dense1, 0.8)
    dense2 = tflearn.fully_connected(dropout1, 64, activation='tanh',
                                     regularizer='L2', weight_decay=0.001)
    dropout2 = tflearn.dropout(dense2, 0.8)
    softmax = tflearn.fully_connected(dropout2, 10, activation='softmax')
    
    # Regression using SGD with learning rate decay and Top-3 accuracy
    sgd = tflearn.SGD(learning_rate=0.1, lr_decay=0.96, decay_step=1000)
    top_k = tflearn.metrics.Top_k(3)
    net = tflearn.regression(softmax, optimizer=sgd, metric=top_k,
                             loss='categorical_crossentropy')
    
    # Training
    model = tflearn.DNN(net, tensorboard_verbose=0)
    model.fit(X, Y, n_epoch=20, validation_set=(testX, testY),
    show_metric=True, run_id="dense_model")

    from:https://github.com/tflearn/tflearn/blob/master/examples/images/dnn.py

  • 相关阅读:
    .Net环境下的缓存技术介绍
    JavaScript 全局对象
    JavaScript escape() 函数
    实现DIV拖动
    巧用Ajax的beforeSend 提高用户体验
    js中ie8下不识别indexOf的解决办法
    页面弹窗效果HTML
    让html页面中的文字不可选中
    MVC路由规则
    C# Math.Round
  • 原文地址:https://www.cnblogs.com/bonelee/p/8404388.html
Copyright © 2020-2023  润新知