从下面分析可以看出,是先做了hash计算,然后使用hash join table来讲hash值相等的数据合并在一起。然后再使用udf计算距离,最后再filter出满足阈值的数据:
参考:https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/ml/feature/LSH.scala
/** * Join two datasets to approximately find all pairs of rows whose distance are smaller than * the threshold. If the [[outputCol]] is missing, the method will transform the data; if the * [[outputCol]] exists, it will use the [[outputCol]]. This allows caching of the transformed * data when necessary. * * @param datasetA One of the datasets to join. * @param datasetB Another dataset to join. * @param threshold The threshold for the distance of row pairs. * @param distCol Output column for storing the distance between each pair of rows. * @return A joined dataset containing pairs of rows. The original rows are in columns * "datasetA" and "datasetB", and a column "distCol" is added to show the distance * between each pair. */ def approxSimilarityJoin( datasetA: Dataset[_], datasetB: Dataset[_], threshold: Double, distCol: String): Dataset[_] = { val leftColName = "datasetA" val rightColName = "datasetB" val explodeCols = Seq("entry", "hashValue") val explodedA = processDataset(datasetA, leftColName, explodeCols) // If this is a self join, we need to recreate the inputCol of datasetB to avoid ambiguity. // TODO: Remove recreateCol logic once SPARK-17154 is resolved. val explodedB = if (datasetA != datasetB) { processDataset(datasetB, rightColName, explodeCols) } else { val recreatedB = recreateCol(datasetB, $(inputCol), s"${$(inputCol)}#${Random.nextString(5)}") processDataset(recreatedB, rightColName, explodeCols) } // Do a hash join on where the exploded hash values are equal. val joinedDataset = explodedA.join(explodedB, explodeCols) .drop(explodeCols: _*).distinct() // Add a new column to store the distance of the two rows. val distUDF = udf((x: Vector, y: Vector) => keyDistance(x, y), DataTypes.DoubleType) val joinedDatasetWithDist = joinedDataset.select(col("*"), distUDF(col(s"$leftColName.${$(inputCol)}"), col(s"$rightColName.${$(inputCol)}")).as(distCol) ) // Filter the joined datasets where the distance are smaller than the threshold. joinedDatasetWithDist.filter(col(distCol) < threshold) }
补充:
sql join 算法 时间复杂度
参考
笔记
sql语句如下:
SELECT T1.name, T2.date
FROM T1, T2
WHERE T1.id=T2.id
AND T1.color='red'
AND T2.type='CAR'
假设T1有m行,T2有n行,那么,普通情况下,应该要遍历T1的每一行的id(m),然后在遍历T2(n)中找出T2.id = T1.id的行进行join。时间复杂度应该是O(m*n)
如果没有索引的话,engine会选择hash join或者merge join进行优化。
hash join是这样的:
- 选择被哈希的表,通常是小一点的表。让我们愉快地假定是T1更小吧。
- T1所有的记录都被遍历。如果记录符合color=’red’,这条记录就会进去哈希表,以id为key,以name为value。
- T2所有的记录被遍历。如果记录符合type=’CAR’,使用这条记录的id去搜索哈希表,所有命中的记录的name的值,都被返回,还带上了当前记录的date的值,这样就可以把两者join起来了。
时间复杂度O(n+m),实现hash表是O(n),hash表查找是O(m),直接将其相加。
merge join是这样的:
1.复制T1(id, name),根据id排序。
2.复制T2(id, date),根据id排序。
3.两个指针指向两个表的最小值。
>1 2<
2 3
2 4
3 5
4.在循环中比较指针,如果match,就返回记录。如果不match,指向较小值的指针指向下一个记录。
>1 2< - 不match, 左指针小,左指针++
2 3
2 4
3 5
1 2< - match, 返回记录,两个指针都++
>2 3
2 4
3 5
1 2 - match, 返回记录,两个指针都++
2 3<
2 4
>3 5
1 2 - 左指针越界,查询结束。
2 3
2 4<
3 5
>
时间复杂度O(n*log(n)+m*log(m))。排序算法的复杂度分别是O(n*log(n))和O(m*log(m)),直接将两者相加。
在这种情况下,使查询更加复杂反而可以加快速度,因为更少的行需要经受join-level的测试?
当然了。
如果原来的query没有where语句,如
SELECT T1.name, T2.date
FROM T1, T2
是更简单的,但是会返回更多的结果并运行更长的时间。
hash函数的补充:
可以看到 hashFunction 涉及到indices 字段下表的计算。另外的distance计算使用了jaccard相似度。
/** * :: Experimental :: * * Model produced by [[MinHashLSH]], where multiple hash functions are stored. Each hash function * is picked from the following family of hash functions, where a_i and b_i are randomly chosen * integers less than prime: * `h_i(x) = ((x cdot a_i + b_i) mod prime)` * * This hash family is approximately min-wise independent according to the reference. * * Reference: * Tom Bohman, Colin Cooper, and Alan Frieze. "Min-wise independent linear permutations." * Electronic Journal of Combinatorics 7 (2000): R26. * * @param randCoefficients Pairs of random coefficients. Each pair is used by one hash function. */ @Experimental @Since("2.1.0") class MinHashLSHModel private[ml]( override val uid: String, private[ml] val randCoefficients: Array[(Int, Int)]) extends LSHModel[MinHashLSHModel] { /** @group setParam */ @Since("2.4.0") override def setInputCol(value: String): this.type = super.set(inputCol, value) /** @group setParam */ @Since("2.4.0") override def setOutputCol(value: String): this.type = super.set(outputCol, value) @Since("2.1.0") override protected[ml] def hashFunction(elems: Vector): Array[Vector] = { require(elems.numNonzeros > 0, "Must have at least 1 non zero entry.") val elemsList = elems.toSparse.indices.toList val hashValues = randCoefficients.map { case (a, b) => elemsList.map { elem: Int => ((1L + elem) * a + b) % MinHashLSH.HASH_PRIME }.min.toDouble } // TODO: Output vectors of dimension numHashFunctions in SPARK-18450 hashValues.map(Vectors.dense(_)) } @Since("2.1.0") override protected[ml] def keyDistance(x: Vector, y: Vector): Double = { val xSet = x.toSparse.indices.toSet val ySet = y.toSparse.indices.toSet val intersectionSize = xSet.intersect(ySet).size.toDouble val unionSize = xSet.size + ySet.size - intersectionSize assert(unionSize > 0, "The union of two input sets must have at least 1 elements") 1 - intersectionSize / unionSize } @Since("2.1.0") override protected[ml] def hashDistance(x: Seq[Vector], y: Seq[Vector]): Double = { // Since it's generated by hashing, it will be a pair of dense vectors. // TODO: This hashDistance function requires more discussion in SPARK-18454 x.zip(y).map(vectorPair => vectorPair._1.toArray.zip(vectorPair._2.toArray).count(pair => pair._1 != pair._2) ).min } @Since("2.1.0") override def copy(extra: ParamMap): MinHashLSHModel = { val copied = new MinHashLSHModel(uid, randCoefficients).setParent(parent) copyValues(copied, extra) } @Since("2.1.0") override def write: MLWriter = new MinHashLSHModel.MinHashLSHModelWriter(this) }