• hive学习笔记之二:复杂数据类型


    欢迎访问我的GitHub

    https://github.com/zq2599/blog_demos

    内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;

    《hive学习笔记》系列导航

    1. 基本数据类型
    2. 复杂数据类型
    3. 内部表和外部表
    4. 分区表
    5. 分桶
    6. HiveQL基础
    7. 内置函数
    8. Sqoop
    9. 基础UDF
    10. 用户自定义聚合函数(UDAF)
    11. UDTF

    本篇概览

    • 作为《hive学习笔记》的第二篇,前面咱们了解了基本类型,本篇要学习的是复杂数据类型;
    • 复杂数据类型一共有四种:
    1. ARRAY:数组
    2. MAP:键值对
    3. STRUCT:命名字段集合
    4. UNION:从几种数据类型中指明选择一种,UNION的值必须于这些数据类型之一完全匹配;
    • 接下来逐个学习;

    准备环境

    1. 确保hadoop已经启动;
    2. 进入hive控制台的交互模式;
    3. 执行以下命令,使查询结果中带有字段名:
    set hive.cli.print.header=true;
    

    ARRAY

    1. 创建名为t2的表,只有person和friends两个字段,person是字符串类型,friends是数组类型,通过文本文件导入数据时,person和friends之间的分隔符是竖线,friends内部的多个元素之间的分隔符是逗号,注意声明分隔符的语法:
    create table if not exists t2(
    person string,
    friends array<string>
    )
    row format delimited 
    fields terminated by '|'
    collection items terminated by ',';  
    
    1. 创建文本文件002.txt,内容如下,可见只有两条记录,第一条person字段值为tom,friends字段里面有三个元素,用逗号分隔:
    tom|tom_friend_0,tom_friend_1,tom_friend_2
    jerry|jerry_friend_0,jerry_friend_1,jerry_friend_2,jerry_friend_3,jerry_friend_4,jerry_friend_5
    
    1. 执行以下语句,从本地的002.txt文件导入数据到t2表:
    load data local inpath '/home/hadoop/temp/202010/25/002.txt' into table t2;
    
    1. 查看全部数据:
    hive> select * from t2;
    OK
    t2.person	t2.friends
    tom	["tom_friend_0","tom_friend_1","tom_friend_2"]
    jerry	["jerry_friend_0","jerry_friend_1","jerry_friend_2","jerry_friend_3","jerry_friend_4","jerry_friend_5"]
    Time taken: 0.052 seconds, Fetched: 2 row(s)
    
    1. 查询friends中的某个元素的SQL:
    select person, friends[0], friends[3] from t2;  
    

    执行结果如下,第一条记录没有friends[3],显示为NULL:

    hive> select person, friends[0], friends[3] from t2; 
    OK
    person	_c1	_c2
    tom	tom_friend_0	NULL
    jerry	jerry_friend_0	jerry_friend_3
    Time taken: 0.052 seconds, Fetched: 2 row(s)
    
    1. 数组元素中是否包含某值的SQL:
    select person, array_contains(friends, 'tom_friend_0') from t2;
    

    执行结果如下,第一条记录friends数组中有tom_friend_0,显示为true,第二条记录不包含,就显示false:

    hive> select person, array_contains(friends, 'tom_friend_0') from t2;
    OK
    person	_c1
    tom	true
    jerry	false
    Time taken: 0.061 seconds, Fetched: 2 row(s)
    
    1. 第一条记录的friends数组中有三个元素,借助LATERAL VIEW语法可以把这三个元素拆成三行,SQL如下:
    select t.person, single_friend
    from (
        select person, friends 
        from  t2 where person='tom'
    ) t LATERAL VIEW explode(t.friends) v as single_friend;
    

    执行结果如下,可见数组中的每个元素都能拆成单独一行:

    OK
    t.person	single_friend
    tom	tom_friend_0
    tom	tom_friend_1
    tom	tom_friend_2
    Time taken: 0.058 seconds, Fetched: 3 row(s)
    
    • 以上就是数组的基本操作,接下来是键值对;

    MAP,建表,导入数据

    • 接下来打算创建名为t3的表,只有person和address两个字段,person是字符串类型,address是MAP类型,通过文本文件导入数据时,对分隔符的定义如下:
    1. person和address之间的分隔符是竖线
    2. address内部有多个键值对,它们的分隔符是逗号
    3. 而每个键值对的键和值的分隔符是冒号
    • 满足上述要求的建表语句如下所示:
    create table if not exists t3(
    person string,
    address map<string, string>
    )
    row format delimited 
    fields terminated by '|'
    collection items terminated by ',' 
    map keys terminated by ':';
    
    • 创建文本文件003.txt,可见用了三种分隔符来分隔字段、MAP中的多个元素、每个元素键和值:
    tom|province:guangdong,city:shenzhen
    jerry|province:jiangsu,city:nanjing
    
    • 导入003.txt的数据到t3表:
    load data local inpath '/home/hadoop/temp/202010/25/003.txt' into table t3;
    

    MAP,查询

    1. 查看全部数据:
    hive> select * from t3;
    OK
    t3.person	t3.address
    tom	{"province":"guangdong","city":"shenzhen"}
    jerry	{"province":"jiangsu","city":"nanjing"}
    Time taken: 0.075 seconds, Fetched: 2 row(s)
    
    1. 查看MAP中的某个key,语法是field["xxx"]
    hive> select person, address["province"] from t3;
    OK
    person	_c1
    tom	guangdong
    jerry	jiangsu
    Time taken: 0.075 seconds, Fetched: 2 row(s)
    
    1. 使用if函数,下面的SQL是判断address字段中是否有"street"键,如果有就显示对应的值,没有就显示filed street not exists
    select person, 
    if(address['street'] is null, "filed street not exists", address['street']) 
    from t3;
    

    输出如下,由于address字段只有provincecity两个键,因此会显示filed street not exists

    OK
    tom	filed street not exists
    jerry	filed street not exists
    Time taken: 0.087 seconds, Fetched: 2 row(s)
    
    1. 使用explode将address字段的每个键值对展示成一行:
    hive> select explode(address) from t3;
    OK
    province	guangdong
    city	shenzhen
    province	jiangsu
    city	nanjing
    Time taken: 0.081 seconds, Fetched: 4 row(s)
    
    1. 上面的explode函数只能展示address字段,如果还要展示其他字段就要继续LATERAL VIEW语法,如下,可见前面的数组展开为一个字段,MAP展开为两个字段,分别是key和value:
    select t.person, address_key, address_value
    from (
        select person, address 
        from  t3 where person='tom'
    ) t LATERAL VIEW explode(t.address) v as  address_key, address_value;
    

    结果如下:

    OK
    tom	province	guangdong
    tom	city	shenzhen
    Time taken: 0.118 seconds, Fetched: 2 row(s)
    
    1. size函数可以查看MAP中键值对的数量:
    hive> select person, size(address) from t3;
    OK
    tom	2
    jerry	2
    Time taken: 0.082 seconds, Fetched: 2 row(s)
    

    STRUCT

    1. STRUCT是一种记录类型,它封装了一个命名的字段集合,里面有很多属性,新建名为t4的表,其info字段就是STRUCT类型,里面有age和city两个属性,person和info之间的分隔符是竖线,info内部的多个元素之间的分隔符是逗号,注意声明分隔符的语法:
    create table if not exists t4(
    person string,
    info struct<age:int, city:string>
    )
    row format delimited 
    fields terminated by '|'
    collection items terminated by ',';
    
    1. 准备好名为004.txt的文本文件,内容如下:
    tom|11,shenzhen
    jerry|12,nanjing
    
    1. 加载004.txt的数据到t4表:
    load data local inpath '/home/hadoop/temp/202010/25/004.txt' into table t4;
    
    1. 查看t4的所有数据:
    hive> select * from t4;
    OK
    tom	{"age":11,"city":"shenzhen"}
    jerry	{"age":12,"city":"nanjing"}
    Time taken: 0.063 seconds, Fetched: 2 row(s)
    
    1. 查看指定字段,用filedname.xxx语法:
    hive> select person, info.city from t4;
    OK
    tom	shenzhen
    jerry	nanjing
    Time taken: 0.141 seconds, Fetched: 2 row(s)
    

    UNION

    • 最后一种是UNIONTYPE,这是从几种数据类型中指明选择一种,由于UNIONTYPE数据的创建设计到UDF(create_union),这里先不展开了,先看看建表语句:
    CREATE TABLE union_test(foo UNIONTYPE<int, double, array<string>, struct<a:int,b:string>>);
    
    • 查询结果:
    SELECT foo FROM union_test;
    
    {0:1}
    {1:2.0}
    {2:["three","four"]}
    {3:{"a":5,"b":"five"}}
    {2:["six","seven"]}
    {3:{"a":8,"b":"eight"}}
    {0:9}
    {1:10.0}
    
    • 至此,hive的基础数据类型和复杂数据类型咱们都实际操作过一遍了,接下来的文章将展开更多hive知识,期待与您共同进步;

    你不孤单,欣宸原创一路相伴

    1. Java系列
    2. Spring系列
    3. Docker系列
    4. kubernetes系列
    5. 数据库+中间件系列
    6. DevOps系列

    欢迎关注公众号:程序员欣宸

    微信搜索「程序员欣宸」,我是欣宸,期待与您一同畅游Java世界...

  • 相关阅读:
    TCP通信 小例子
    Socket的简单使用
    Redis练习
    资料
    Redis封装帮助类
    使用Redis的基本操作
    Redis配置主从
    Redis基本设置
    clientHeight ,offsetHeight,style.height,scrollHeight的区别与联系
    服务器操作之如何绑定网站
  • 原文地址:https://www.cnblogs.com/bolingcavalry/p/14646404.html
Copyright © 2020-2023  润新知