• SPOJ DIVISION


    题目链接http://www.spoj.com/problems/DIVISION/

    题目大意:求0~2n-1 中有多少个数字能被3整除(包括0 和2n-1)。 n <= 2e18, 答案对 mod = 1e9 + 7取余。

    解题思路:通过分析可以发现个数是 (2n / 3 + 1) % mod . 那么关键问题就是如何快速计算 2n / 3 % mod 。

    由于n比较大,所以可以使用快速幂取模进行计算。然而,尽管a / b % c 可以通过逆元来计算,但前提是a整除b并且逆元存在。这里3关于mod 的逆元确实存在(互质),2n 却无法整除3,那么如何解决这个问题呢?

    能够发现 2% 3 = 1 或 2,并且当且仅当n为奇数为2,n为偶数为1。那么我们就可以将 2n / 3 % mod 转化成 2n - (n & 1? 2: 1) / 3 % mod.这样两者就能够整除了,从而也就可以采用快速幂取模计算了。

    代码:

     1 ll n;
     2 ll x;
     3 
     4 ll ext_gcd(ll a, ll b, ll &d, ll &x, ll &y){
     5     if(b!= 0){
     6         ext_gcd(b, a % b, d, y, x);
     7         y -= x * (a / b);
     8     }
     9     else{
    10         d = a; x = 1; y = 0;
    11     }
    12 }
    13 void dowork(){
    14     ll d, y;
    15     ext_gcd(3, mod, d, x, y);
    16     if(x < 0) x = x + (abs(x) / mod + 1) * mod;
    17 }
    18 ll pow_mod(ll a, ll b){
    19     if(b == 0) return 1;
    20     ll tmans = pow_mod(a, b / 2);
    21     ll ans = tmans * tmans % mod;
    22     if(b & 1) ans = a % mod * ans;
    23     return ans;
    24 }
    25 void solve(){
    26     ll ans = pow_mod(2, n);
    27     ans = ans * x % mod;
    28     ans = (ans - ((n & 1? 2: 1) * x) % mod) % mod; 
    29     if(ans < 0) ans = (abs(ans) / mod + 1) * mod + ans;
    30     ans = (ans + 1) % mod;
    31     printf("%lld
    ", ans);
    32 }
    33 int main(){
    34     dowork();
    35     while(scanf("%lld", &n) != EOF){
    36         solve();
    37     }
    38 }

    题目:

    DIVISION - Divisiblity by 3

    Divisiblity by 3 rule is pretty simple rule:Given a number n sum the 
    digits of n and check if sum is divisible by 3.If divisible then n is 
    divisible by 3 else not divisible.
    Seems pretty simple but what if we want to extend this rule in binary 
    representation!! Given a binary representation we can again find if it is 
    divisible by 3 or not.
    Making it little bit interesting what if only length of binary 
    representation of a number is given say n.Can we find how many numbers 
    exist in decimal form such that when converted into binary form has n 
    length and is divisible by 3 ??

    Divisiblity by 3 rule is pretty simple rule: Given a number sum the digits of number and check if sum is divisible by 3.If divisible then it is divisible by 3 else not divisible.Seems pretty simple but what if we want to extend this rule in binary representation!!

    Given a binary representation we can again find if it is divisible by 3 or not. Making it little bit interesting what if only length of binary representation of a number is given say n.

    Now can we find how many numbers exist in decimal form(base 10) such that when converted into binary(base 2) form has n length and is divisible by 3 ?? (1 <= n < 2*10^18)

    Input

     Length of binary form: n

    output

    Print in new line the answer modulo 1000000007.

    Example

    Input:
    1
    2
    Output:
    1
    2
    Explanation: For n=2 there are only 2 numbers divisible by 3 viz.0 (00) and 3 (11) and having length 2 in binary form.
    NOTE:There are multiple testfiles containing many testcases each so read till EOF.
    Warnings: Leading zeros are allowed in binary representation and slower languages might require fast i/o. Take care.
  • 相关阅读:
    Java——通过Java代码启动批处理文件
    成功解决错误1130 Host xxx is not allowed to connect to this MySQL server
    SQL全文索引的作用(转)
    查找不重复记录
    全文索引原理和一个完整的SQL SERVER数据库全文索引的示例(转)
    C# 参考:令人惊喜的泛型委托 Predicate/Func/Action
    moss 外网访问设置
    SQL2000和SQL2005的行转列处理方法
    海量数据库查询
    MSSQL 查询优化二(转)
  • 原文地址:https://www.cnblogs.com/bolderic/p/7406750.html
Copyright © 2020-2023  润新知