• HDU 3333 Turing Tree (树状数组+离线)


    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3333

    大意是区间求和,不过求的是所有不同元素的和。因此可以从如何去除不同元素方面入手:

    离线存储所有查询并且按照区间最右端下标从小到大排序,为何要这样做后面会提到。

    建树之后,从左到右遍历元素,标记下标,碰见出现过的(我用的是map),就将之前的那个元素置为0,然后重新标记下标为当前值。如果当前位置是一个查询的右端点则直接计算出结果即可。

    由于区间按照右端点排序后,更靠右的区间要么包含之前被置为0的点要么不包括,但一定包含了那个用来置其为0的元素,也就是说前面的更新不会对后面区间产生影响。

    代码:

     1 #define maxn 120005
     2 long long tree[maxn];
     3 long long a[maxn];
     4 int n;
     5 int q, qi[maxn], qj[maxn], f[maxn];
     6 long long qans[maxn];
     7 map<long long, int> mmap;
     8 
     9 long long sum(int i){
    10     long long ans = 0;
    11     while(i){
    12         ans += tree[i];
    13         i -= (i & -i);
    14     }
    15     return ans;
    16 }    
    17 void add(int i, long long x){
    18     while(i <= n){
    19         tree[i] += x;
    20         i += (i & -i);
    21     }
    22 }
    23 int cmp(int i, int j){
    24     return qj[i] < qj[j];
    25 }
    26 
    27 int main(){
    28     int t;
    29     scanf("%d", &t);
    30     while(t--){
    31         memset(tree, 0, sizeof(tree));
    32         memset(a, 0, sizeof(a));
    33         memset(qi, 0, sizeof(qi));
    34         memset(qj, 0, sizeof(qj));
    35         mmap.clear();
    36         scanf("%d", &n);
    37         for(int i = 1; i <= n; i++){
    38             scanf("%lld", &a[i]);
    39             add(i, a[i]);
    40         }
    41         scanf("%d", &q);
    42         for(int i = 1; i <= q; i++){
    43             scanf("%d %d", &qi[i], &qj[i]);
    44             f[i] = i;
    45         }
    46         sort(f + 1, f + q + 1, cmp);
    47         int fc = 1, qc = f[fc];
    48         for(int i = 1; i <= n; i++){
    49             long long tma = a[i];
    50             if(mmap[tma] == 0) mmap[tma] = i;
    51             else {
    52                 int ind = mmap[tma];
    53                 add(ind, -tma);
    54                 mmap[tma] = i;
    55             }
    56             while(qj[qc] == i){
    57                 long long ans = sum(i) - sum(qi[qc] - 1);
    58                 qans[qc] = ans;
    59                 fc++;
    60                 qc = f[fc];
    61             }
    62         }
    63         for(int i = 1; i <= q; i++){
    64             printf("%lld
    ", qans[i]);
    65         }
    66     }
    67 }
    68 /*
    69 2
    70 3
    71 1 1 4
    72 2
    73 1 2
    74 2 3
    75 5
    76 1 1 2 1 3
    77 3
    78 1 5
    79 2 4
    80 3 5
    81 */

    题目:

    Turing Tree

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 5296    Accepted Submission(s): 1875


    Problem Description
    After inventing Turing Tree, 3xian always felt boring when solving problems about intervals, because Turing Tree could easily have the solution. As well, wily 3xian made lots of new problems about intervals. So, today, this sick thing happens again...

    Now given a sequence of N numbers A1, A2, ..., AN and a number of Queries(i, j) (1≤i≤j≤N). For each Query(i, j), you are to caculate the sum of distinct values in the subsequence Ai, Ai+1, ..., Aj.
     
    Input
    The first line is an integer T (1 ≤ T ≤ 10), indecating the number of testcases below.
    For each case, the input format will be like this:
    * Line 1: N (1 ≤ N ≤ 30,000).
    * Line 2: N integers A1, A2, ..., AN (0 ≤ Ai ≤ 1,000,000,000).
    * Line 3: Q (1 ≤ Q ≤ 100,000), the number of Queries.
    * Next Q lines: each line contains 2 integers i, j representing a Query (1 ≤ i ≤ j ≤ N).
     
    Output
    For each Query, print the sum of distinct values of the specified subsequence in one line.
     
    Sample Input
    2 3 1 1 4 2 1 2 2 3 5 1 1 2 1 3 3 1 5 2 4 3 5
     
    Sample Output
    1 5 6 3 6
     
    Author
    3xian@GDUT
  • 相关阅读:
    160328、rabbitMQ集群部署示例
    160325、虚拟机三种网路设置
    160324、特殊时间下拉框
    export export-default import 使用场景
    vue项目工具文件utils.js javascript常用工具类,javascript常用工具类,util.js
    如何在vuejs中抽出公共代码
    vue 各种 import 引入
    es6环境中,export与import使用方法
    基于rem的移动端响应式适配方案(详解) 移动端H5页面的设计稿尺寸大小规范
    JS获取子节点、父节点和兄弟节点的方法实例总结
  • 原文地址:https://www.cnblogs.com/bolderic/p/7150214.html
Copyright © 2020-2023  润新知