• HDU 1028 Ignatius and the Princess III dp


    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028

    一道经典题,也是算法设计与分析上的一道题,可以用递推,动态规划,母函数求解,我用的是动态规划,也就是递推的变形。

    dp[i][j]表示数i的划分中最大数不超过j的划分的个数

    状态转移方程:

    if(j > i)
      dp[i][j] = dp[i][i];
    if(j == i)
      dp[i][j] = dp[i][j - 1] + 1;
    if(j < i)
      dp[i][j] = dp[i][j - 1] + dp[i - j][j];

    当然前提是dp[x][1]=1

    对于j<i的时候的转移方程可以这么理解:

      如果我要求dp[5][3], 那么我可以先加上dp[5][2]也就是最大数不超过2的划分;然后接下来我要加上的若干个划分每个划分中至少包括一个3,而且最大的是3,那么对于这若干个划分任意一个划分去掉3的话,就变成了5-3的最大数不超过3的划分的个数-->即有dp[5][3] = dp[5][2]+dp[2][3].

    代码:

     1 #define maxn 135
     2 int dp[maxn][maxn];
     3 
     4 int dowork(int x){
     5     for(int i = 1; i <= x; i++)
     6         dp[i][1] = 1;
     7     for(int i = 1; i <= x; i++)
     8         dp[1][i] = 1;
     9     for(int i = 2; i <= x; i++){
    10         for(int j = 2; j <= x; j++){
    11             if(j > i) 
    12                 dp[i][j] = dp[i][i];
    13             if(j == i) 
    14                 dp[i][j] = dp[i][j - 1] + 1;
    15             if(j < i) 
    16                 dp[i][j] = dp[i][j - 1] + dp[i - j][j];
    17             
    18             //printf("dp(%d, %d):%d ", i, j, dp[i][j]);
    19         }
    20         //puts("");
    21     }
    22     return dp[x][x];
    23 }
    24 
    25 int main(){
    26     int n;
    27     while(scanf("%d", &n) != EOF){
    28         memset(dp, 0, sizeof(dp));
    29         printf("%d
    ", dowork(n));
    30     }
    31 } 

    题目:

    Ignatius and the Princess III

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 21162    Accepted Submission(s): 14776


    Problem Description
    "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

    "The second problem is, given an positive integer N, we define an equation like this:
      N=a[1]+a[2]+a[3]+...+a[m];
      a[i]>0,1<=m<=N;
    My question is how many different equations you can find for a given N.
    For example, assume N is 4, we can find:
      4 = 4;
      4 = 3 + 1;
      4 = 2 + 2;
      4 = 2 + 1 + 1;
      4 = 1 + 1 + 1 + 1;
    so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
     
    Input
    The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
     
    Output
    For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
     
    Sample Input
    4 10 20
     
    Sample Output
    5 42 627
  • 相关阅读:
    博客园CSS备份5
    博客园界面自定义教程
    awk 入门教程(阮一峰)
    批量检查cksum是否一致
    linux文件批量重命名
    cipher block
    riscv-gdbserver
    rsa_gmp
    asic
    video
  • 原文地址:https://www.cnblogs.com/bolderic/p/6953131.html
Copyright © 2020-2023  润新知