做计算机视觉方向,除了流行的各种深度学习算法,很多时候也要会基础的图像处理方法。
记录下opencv的一些操作(图像映射变换),日后可以方便使用
先上一张效果图
图二和图三是同一种方法,只是变换矩阵不同,都是3点映射变换
图四使用的是4点映射变换
--------------------------------------------------------------------------------------------------------------------------------------------------
简单介绍下原理
图像都知道是3维(通道)的矩阵,前两维就是由1字节(0-255)数字填充的二维数组。数字大小代表颜色的深浅。
我们把变换前的原图作为x和y。变换后的图为u和v。将[x,y,1]乘上变换矩阵就可以得到对应的新的u和v。不同的变换矩阵有不同的作用(不同的变换方式)
-------------------------------------------------------------------------------------------------------------------------------------------------
所以现在就是求不同变换对应的不同的变换矩阵的过程
求这个矩阵 在opencv中直接就有方法
只需提供原图的三个点和你要变换之后的三个点的映射位置(3个原图点,3个映射点)就可以求出这个变换矩阵
当然了 你会发现不管怎么调整映射点 都不能任意变换
因为只给三个点时 变换之后的图其实只是原图的等比缩放,并不能做到随意映射的效果
这里opencv也提供了 四个点和四个映射的方法 求出对应的变换矩阵 ,最终得到任意映射的效果
代码如下:
1 # coding=gbk 2 import cv2 3 import numpy as np 4 import matplotlib.pyplot as plt 5 plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 6 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 7 8 img=cv2.imread(r"test6.jpg") 9 img = img[:,:,[2,1,0]] 10 cols,rows,ch=img.shape 11 12 pts1 = np.float32([[0, 0], [cols - 1, 0], [0, rows - 1]]) #三点映射 13 pts2 = np.float32([[0, 0], [cols - 1, 0], [80, rows - 1]]) 14 pts21 = np.float32([[0, 0], [cols - 1, 0], [0, rows - 1]]) 15 pts22 = np.float32([[cols * 0.2, rows * 0.1], [cols * 0.9, rows * 0.2], [cols * 0.1, rows * 0.9]]) 16 pts31 = np.float32([[0, 0], [cols - 1, 0], [0, rows - 1],[cols - 1,rows-1]]) #四点映射 17 pts32 = np.float32([[0, 0], [cols - 1, 0], [50, rows - 1],[cols - 50,rows-50]]) 18 19 M = cv2.getAffineTransform(pts1,pts2) #求三点映射的变换矩阵 20 M2= cv2.getAffineTransform(pts21,pts22) 21 M3 = cv2.getPerspectiveTransform(pts31,pts32) #求四点映射的变换矩阵 22 23 dst = cv2.warpAffine(img,M,(rows+120,cols)) #三点映射的变换函数 24 dst2 = cv2.warpAffine(img,M2,(rows,cols)) 25 dst3 = cv2.warpPerspective(img,M3,(rows+40,cols+50)) #四点映射的变换函数 26 27 plt.subplot(221) 28 plt.imshow(img) 29 plt.title("原图") 30 plt.subplot(222) 31 plt.imshow(dst) 32 plt.title("投影变换") 33 plt.subplot(223) 34 plt.imshow(dst2) 35 plt.title("仿射原图变换") 36 plt.subplot(224) 37 plt.imshow(dst3) 38 plt.title("仿射不规则变换") 39 40 plt.show()