• SVD奇异值分解


    网易公开课 奇异值分解SVD

     

    http://open.163.com/movie/2010/11/1/G/M6V0BQC4M_M6V2B5R1G.html

     http://charlesx.top/2016/03/Singularly-Valuable-Decomposition/

    http://blog.sciencenet.cn/blog-696950-699432.html

    http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html

    http://www.ams.org/samplings/feature-column/fcarc-svd

    http://websites.uwlax.edu/twill/svd/svd/index.html

     

     

    SVD分解

    SVD 分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将 LSA笔记的SVD一节单独作为一篇文章。本节讨论SVD分解相关数学问题,一个分为3个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论 SVD矩阵分解,第三部分讨论低阶近似。本节讨论的矩阵都是实数矩阵。

    基础知识

    1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数

    2. 对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵

    3. 单位矩阵:如果对角矩阵中所有对角线上的元素都为零,该矩阵称为单位矩阵

    4. 特征值:对一个M x M矩阵C和向量X,如果存在λ使得下式成立

     

    则称λ为矩阵C的特征值,X称为矩阵的特征向量。非零特征值的个数小于等于矩阵的秩。

    5. 特征值和矩阵的关系:考虑以下矩阵

     

    该矩阵特征值λ1 = 30,λ2 = 20,λ3 = 1。对应的特征向量

     

    T=(2,4,6) 计算S x VT

     

     

    有 上面计算结果可以看出,矩阵与向量相乘的结果与特征值,特征向量有关。观察三个特征值λ1 = 30,λ2 = 20,λ3 = 1,λ3值最小,对计算结果的影响也最小,如果忽略λ3,那么运算结果就相当于从(60,80,6)转变为(60,80,0),这两个向量十分相近。这也 表示了数值小的特征值对矩阵-向量相乘的结果贡献小,影响小。这也是后面谈到的低阶近似的数学基础。

    矩阵分解

    1. 方阵的分解

    1) 设S是M x M方阵,则存在以下矩阵分解

     

    其中U 的列为S的特征向量,

    2) 设S是M x M 方阵,并且是对称矩阵,有M个特征向量。则存在以下分解

     

    其中Q的列为矩阵S的单位正交特征向量,T=Q-1,因为正交矩阵的逆等于其转置。

    2. 奇异值分解

    上面讨论了方阵的分解,但是在LSA中,我们是要对Term-Document矩阵进行分解,很显然这个矩阵不是方阵。这时需要奇异值分解对Term-Document进行分解。奇异值分解的推理使用到了上面所讲的方阵的分解。

    假设C是M x N矩阵,U是M x M矩阵,其中U的列为CCT的正交特征向量,V为N x N矩阵,其中V的列为CTC的正交特征向量,再假设r为C矩阵的秩,则存在奇异值分解:

     

    其中CCT和CTC的特征值相同,为

    Σ为M X N,其中

    σi称为矩阵C的奇异值。

    用C乘以其转置矩阵CT得:

     

    上式正是在上节中讨论过的对称矩阵的分解。

    奇异值分解的图形表示:

     

    从图中可以看到Σ虽然为M x N矩阵,但从第N+1行到M行全为零,因此可以表示成N x N矩阵,又由于右式为矩阵相乘,因此U可以表示为M x N矩阵,VT可以表示为N x N矩阵

    3. 低阶近似

    LSA潜在语义分析中,低阶近似是为了使用低维的矩阵来表示一个高维的矩阵,并使两者之差尽可能的小。本节主要讨论低阶近似和F-范数。

    给定一个M x N矩阵C(其秩为r)和正整数k,我们希望找到一个M x N矩阵Ck,其秩不大于K。设X为C与Ck之间的差,X=C – Ck,X的F-范数为

     

    当k远小于r时,称Ck为C的低阶近似,其中X也就是两矩阵之差的F范数要尽可能的小。

    SVD可以被用与求低阶近似问题,步骤如下:

    1. 给定一个矩阵C,对其奇异值分解:

    2. 构造 k:

    回忆在基础知识一节里曾经讲过,特征值数值的大小对矩阵-向量相乘影响的大小成正比,而奇异值和特征值也是正比关系,因此这里选取数值最小的r-k个特征值设为零合乎情理,即我们所希望的C-Ck尽可能的小。完整的证明可以在Introduction to Information Retrieval[2]中找到。

    我们现在也清楚了LSA的基本思路:LSA希望通过降低传统向量空间的维度来去除空间中的“噪音”,而降维可以通过SVD实现,因此首先对Term-Document矩阵进行SVD分解,然后降维并构造语义空间。

  • 相关阅读:
    kubernetes部署1.15.0版本
    搭建时间服务器
    创建mysql容器
    制作带sshd功能的centos镜像
    容器操作
    镜像制作
    elk日志系统
    k8s基于canel的网络策略
    k8s的flannel网络插件配置
    k8s搭建WebUI--Dashborad管理界面
  • 原文地址:https://www.cnblogs.com/bnuvincent/p/4946075.html
Copyright © 2020-2023  润新知